Что из себя представляют никель металлогидридные аккумуляторные батареи?

К нам приходили вопросы от читателей с просьбой коротко объяснить устройство никель─металлгидридных аккумуляторных батарей, а также их основные плюсы и минусы. Поэтому сегодня предлагаем вашему вниманию статью, в которой максимально сжато рассказывается об этом типе аккумуляторов.

Что такое Ni─MH аккумуляторные батареи?

Никель─металлгидридные аккумуляторные батареи начали создавать в 1970 году. Перед этим был получен способ накапливания водорода в никель─водородных аккумуляторах.

Никель─водородные батареи применяются лишь в космической отрасли, а никель─металлгидридные получили довольно широкое распространение в сфере бытовой электроники.

  1. Первые образцы этих аккумуляторных батарей с металлгидридными сплавами работали крайне нестабильно. Разработчикам не удавалось добиться стабильности параметров и необходимой ёмкости аккумулятора.
  2. Разработка затянулась до 1980 годов, пока не были получены металлогидридные сплавы нового состава.
  3. В результаты были получены Ni-MH аккумуляторы, которые в дальнейшем совершенствовались в сторону увеличения энергетической плотности.
  4. Основным отличием от кадмиевого типа аккумуляторов стало использование в производстве Ni─MH батарей нетоксичных материалов. Кроме того, эти аккумуляторы имели энергетическую плотность на 40 процентов больше, чем у Ni─Cd.

Была заложена возможность дальнейшего увеличения энергетической плотности, но при этом могли возникнуть отрицательные побочные эффекты.

Вместе с тем никель─металлгидридные аккумуляторные батареи унаследовали от никель─кадмиевых моделей существенный саморазряд.

В процессе заряда никель-металлгидридных аккумуляторов на электродах протекают следующие реакции:

  • Ni(OH)2 + OH— ⇒ NiOOH + H2O + e— (положительный электрод);
  • (M + H2) + e— ⇒ MHпогл + OH— (отрицательный электрод).

M ─ это металлгидридный сплав, который поглощает водород. MHпогл ─ объём поглощённого водорода. В процессе разряда реакции идут в обратном направлении. В роли сплава, поглощающего водород, могут выступать марганцево─цинковые, никель─железные, лантано─никелевые, марганцево─никелевые составы.

После выхода на рынок никель─металлгидридные аккумуляторные батареи потеснили аккумуляторы Ni─Cd в сфере различных цифровых устройств.

Многие развитые страны поддержали процесс внедрения таких аккумуляторов законодательно, запретив на своей территории производство кадмиевых батарей.

При этом специалисты в этой области говорят, что энергетическая ёмкость и качество Ni─MH аккумуляторов практически исчерпали свой лимит для совершенствования. Так, что на перспективу рассматриваются литиевые АКБ.

Стоимость никель─металлгидридных аккумуляторных батарей практически соответствует Ni─Cd, чего удалось добиться благодаря стимулирующим экономическим мерам и наращиваю объёмов производства.

Плюсы

  • «Эффект памяти» значительно менее выражен, чем у Ni-Cd аккумуляторных батарей;
  • Не используются вредные компоненты и легко утилизируются;
  • Ёмкость увеличилась на 30 процентов по сравнению с кадмиевыми;
  • Легко переносят хранение и транспортировку.

Минусы

  • Ограниченное значение тока разряда. Их можно разряжать высокими токами, но в этом случае уменьшается срок эксплуатации. Оптимальный режим разряда для никель─металлгидридных аккумуляторных батарей наблюдается при значениях тока 0,2─0,5 от номинальной ёмкости;
  • Несмотря на слабый эффект памяти эти аккумуляторы периодически требуют проведения контрольно тренировочных циклов, чтобы не происходила кристаллизация;
  • Существенное уменьшение ёмкости наблюдается уже после 300 циклов заряда и разряда;
  • Нормальное хранение Ni─MH аккумуляторов обеспечивается в прохладном месте с уровнем заряженности около 40%;
  • Цена никель─металлгидридных аккумуляторов примерно на 20% выше кадмиевых;
  • В процессе зарядки требуется использовать довольно сложный алгоритм для ограничения тепловыделения.

В заключение можно сказать, что все плюсы и минусы никель─металлгидридных аккумуляторных батарей рассматривались в сравнении с Ni─Cd. Это неудивительно, поскольку металлогидридные батареи выпускались в качестве замены кадмиевым.

Но они так и не смогли полностью заменить Ni─Cd, хотя и заняли существенное место на рынке.

Источник: http://akbinfo.ru/vopros-otvet/nikel-metallgidridnye-akkumuljatornye-batarei.html

Особенности никель ─ металлогидридные аккумуляторных батарей

Ni-MH аккумуляторы (никель-металлогидридные) входят в группу щелочных. Представляют собой источники тока химического типа, где в качестве катода выступает оксид никеля, анода — водородный металлгидридный электрод. Щелочь является электролитом. Они похожи на никель-водородные аккумуляторы, но превосходят их по энергоемкости.

Немного истории

Производство Ni-MH аккумуляторов началось в середине двадцатого века. Разрабатывались они с учетом недостатков устаревших никель-кадмиевых батарей. В NiNH могут использоваться разные комбинации металлов. Для их производства были разработаны специальные сплавы и металл, работающие при комнатной температуре и низком водородном давлении.

Промышленное производство началось в восьмидесятых годах. Изготавливаются и совершенствуются сплавы и металл для Ni-MH и сегодня. Современные устройства подобного типа могут обеспечивать до 2 тысяч циклов заряд-разряд. Подобный результат достижим по причине применения никелевых сплавов с редкоземельными металлами.

Как используются эти устройства

Никель-металлогидридные аппараты широко используются для питания разного вида электроники, которая функционирует в автономном режиме. Обычно они делаются в виде ААА либо АА батарей. Имеются и другие исполнения. Например, промышленные батареи. Сфера использования Ni-MH аккумуляторов немного шире, чем у никель-кадмиевых, потому что в их составе нет токсичных материалов.

В данный момент реализуемые на отечественном рынке никель-металлогидридные батареи по емкости делятся на 2 группы — 1500-3000 мАч и 300-1000 мАч:

  1. Первая применяется в устройствах, имеющих повышенное энергопотребление за короткое время. Это всевозможные плееры, модели с радиоуправлением, фотоаппараты, видеокамеры. В общем, приборы, быстро расходующие энергию.
  2. Вторая используется при расходе энергии, который начинается после определенного интервала времени. Это игрушки, фонари, рации. На аккумуляторе работают приборы, умеренно употребляющие электроэнергию, находящиеся в автономном режиме продолжительное время.

Зарядка Ni-MH устройств

Зарядка бывает капельной и быстрой. Изготовители не рекомендуют первую, потому что при ней появляются сложности с точным определением прекращения подачи тока на устройство.

По этой причине может возникнуть мощный перезаряд, что приведет к деградации аккумулятора. Заряжается Ni-MH аккумулятор при помощи быстрого варианта.

Коэффициент полезного действия тут несколько выше, чем у капельного вида зарядки. Ток выставляется — 0,5-1 С.

Как заряжается гидридный аккумулятор:

  • определяется наличие батареи;
  • квалификация устройства;
  • предварительная зарядка;
  • быстрая зарядка;
  • дозарядка;
  • поддерживающая зарядка.

При быстрой зарядке нужно иметь хорошее ЗУ. Оно должно контролировать окончание процесса по разным, независимым друг от друга критериям. К примеру, у Ni-Cd аппаратов достаточно контроля по дельте напряжения. А у NiMH нужно, чтобы аккумулятор следил за температурой и дельтой как минимум.

Контроль и рекомендации по зарядке-разрядке

Для правильной работы Ni-MH следует помнить «Правило трех П»: «Не перегревать», «Не перезаряжать», «Не переразряжать».

Чтобы предупредить перезарядку батарей, используются такие методы контролирования:

  1. Прекращение заряда по скорости изменения температуры. При использовании данной методики во время зарядки температура батареи находится под постоянным контролем. Когда показатели поднимаются быстрее, чем нужно, зарядка прекращается.
  2. Метод прекращения заряда по максимальному его времени.
  3. Прекращение заряда по абсолютной температуре. Тут температура аккумуляторной батареи контролируется в процессе заряда. При достижении максимального значения быстрый заряд прекращается.
  4. Метод прекращения по отрицательной дельте напряжения. Перед завершением зарядки батареи при осуществлении кислородного цикла повышается температура NiMH устройства, что приводит к понижению напряжения.
  5. Максимальное напряжение. Метод используется для отключения заряда устройств с повышенным внутренним сопротивлением. Последнее появляется в конце срока службы батареи по причине недостатка электролита.
  6. Максимальное давление. Метод применяется для призматических аккумуляторов большой емкости. Уровень разрешенного давления в таком устройстве зависит от его размера и конструкции и находится в интервале 0,05-0,8 МПа.

Для уточнения времени зарядки Ni-MH аккумулятора с учетом всех характеристик можно применить формулу: время зарядки (ч) = емкость (мАч) / сила тока зарядного устройства (мА). Например, имеется аккумулятор с емкостью 2000 миллиамперчасов. Ток заряда в ЗУ — 500 мА. Емкость делится на ток и получается 4. То есть батарея будет заряжаться 4 часа.

Обязательные правила, которых нужно придерживаться для правильного функционирования никель-металлогидридного устройства:

  1. Эти аккумуляторы гораздо чувствительнее к нагреву, нежели никель-кадмиевые, перегружать их нельзя. Перегрузка отрицательно скажется на токоотдаче (способности держать и выдавать накопленный заряд).
  2. Металлогидридные аккумуляторы после приобретения можно «потренировать». Сделать 3-5 циклов зарядки/разрядки, что позволит достигнуть придела емкости, потерянной при перевозке и хранении устройства после выхода с конвейера.
  3. Хранить нужно аккумуляторы с небольшим количеством заряда, примерно 20-40% от номинальной емкости.
  4. После разрядки либо зарядки следует дать устройству остыть.
  5. Если в электронном устройстве используется одинаковая сборка аккумуляторов в режиме дозаряда, то время от времени нужно разряжать каждый из них до напряжения 0,98, а потом полностью заряжать. Эту процедуру циклирования рекомендуется выполнять один раз на 7-8 циклов дозарядки аккумуляторов.
  6. Если нужно разрядить NiMH, то следует придерживаться минимального показателя 0,98. Если напряжение упадет ниже 0,98, то он может перестать заряжаться.

Восстановление Ni-MH аккумуляторов

Из-за «эффекта памяти» данные устройства иногда теряют некоторые характеристики и большую часть емкости. Это происходит при многократных циклах неполной разрядки и последующей зарядке. В результате такой работы устройство «запоминает» меньшую границу разрядки, по этой причине понижается его емкость.

Чтобы избавиться от данной проблемы, нужно постоянно выполнять тренировку и восстановление. Лампочкой либо зарядным устройством разряжается до 0,801 вольта, далее батарея полностью заряжается. Если долгое время аккумулятор не проходил процесс восстановления, то желательно произвести 2-3 подобных цикла. Тренировать его желательно раз в 20-30 дней.

Изготовители аккумуляторов Ni-MH утверждают, что «эффект памяти» отнимает примерно 5% емкости. Восстановить ее можно с помощью тренировок.

Важным моментом при восстановлении Ni-MH является наличие у ЗУ функции разрядки с контролем минимального напряжения. Что нужно для недопущения сильного разряда устройства при восстановлении.

Это незаменимо, когда неизвестна начальная степень заряда, и предположить ориентировочное время разряда невозможно.

Если неизвестна степень заряженности батареи, разряжать ее следует под полным контролем напряжения, иначе подобное восстановление приведет к глубокой разрядке. При восстановлении целой батареи сначала рекомендуется провести полную зарядку, чтобы выровнять степень заряда.

Если аккумулятор отработал несколько лет, то восстановление зарядом и разрядом может быть бесполезным. Полезно оно для профилактики в процессе работы устройства.

При эксплуатации NiMH вместе с появлением «эффекта памяти» происходит изменения объема и состава электролита. Стоит помнить, что разумнее восстанавливать элементы аккумулятора по отдельности, чем всю батарею целиком.

Срок годности аккумуляторов — от одного года до пяти (зависит от конкретной модели).

Достоинства и недостатки

Значительное повышение энергетических параметров никель-металлогидридных аккумуляторов не является единственным их достоинством перед кадмиевыми. Отказавшись от использования кадмия, производители начали использовать более экологически чистый металл. Гораздо легче решаются вопросы с утилизацией.

Благодаря этим достоинствам и тому, что в изготовлении используется металл — никель, производство Ni-MH устройств резко выросло, если сравнивать с никель-кадмиевыми аккумуляторами. Удобны они и тем, что для уменьшения разрядного напряжения при длительных перезарядках проводить полную разрядку (до 1 вольта) надо раз в 20-30 дней.

Немного о недостатках:

  1. Изготовители ограничили Ni-MH батареи десятью элементами, потому что с увеличением циклов заряд-разряд и срока службы появляется опасность перегрева и переполюсовки.
  2. Эти аккумуляторы работают в более узком температурном диапазоне, нежели никель-кадмиевые. Уже при -10 и +40°С они теряют свою работоспособность.
  3. При зарядке Ni-MH аккумулятора выделяют много тепла, поэтому нуждаются в предохранителях либо температурных реле.
  4. Повышенный самозаряд, наличие которого обусловлено реакцией оксидно-никелевого электрода с водородом из электролита.

Деградация Ni-MH батарей определяется понижением сорбирующей способности отрицательного электрода при циклировании.

В цикле разрядки-зарядки происходит изменение объема кристаллической решетки, что способствует образованию ржавчины, трещин во время реакции с электролитом.

Появление коррозии происходит при поглощении батареей водорода и кислорода. Это приводит к уменьшению количества электролита и повышению внутреннего сопротивления.

Нужно учитывать, что характеристики батарей зависят от технологии обработки сплава отрицательного электрода, его структуры и состава. Металл для сплавов тоже имеет значение. Все это заставляет производителей очень внимательно выбирать поставщиков сплавов, а потребителей — завод-изготовитель.

Источник: https://batteryk.com/ni-mh-akkumulyatory

Преимущества и недостатки

Никель металлогидридные аккумуляторы являются источником тока на основе химической реакции. Маркируются Ni-MH. Конструктивно являются аналогом ранее разработанных никеле-кадмиевых аккумуляторов (Ni-Cd), а по происходящим химическим реакциям аналогичны никеле-водородным аккумуляторам.

Читайте также:  Чем хороши Ni─mh аккумуляторы

Относятся к категории щелочных источников питания.

Исторический экскурс

Необходимость в перезаряжаемых источниках питания возникла давно. Для разных видов техники очень нужны были компактные модели с повышенной емкостью сохранения заряда. Благодаря космической программе разработали метод сохранения водорода в аккумуляторных батареях. Это были первые никеле водородные экземпляры.

Рассматривая конструкцию, выделяются основные элементы:

  1. электрод (металл гидридный водородный);
  2. катод (никелевый оксид);
  3. электролит (калия гидроксид).

Ранее используемые материалы для изготовления электродов были нестабильны. Но постоянные опыты и изучения привели к тому, что оптимальный состав был получен.

На данный момент для изготовления электродов используют гидрит лантана и никеля (La-Ni-CO).

Но различные производители применяют и другие сплавы, где никель или часть его замещают алюминием, кобальтом, марганцем, которые стабилизируют и активируют сплав.

Проходящие химические реакции

При заряде и разряде внутри аккумуляторов происходят химические реакции, связанные с абсорбированием водорода. Реакции можно записать в следующем виде.

  • Во время зарядки: Ni(OH)2+M→NiOOH+MH.
  • Во время разряда: NiOOH+MH→Ni(OH)2+M.

На катоде протекают следующие реакции с выделением свободных электронов:

  • Во время зарядки: Ni(OH)2+ОН→NiOOH+H2О+е.
  • Во время разряда: NiOOH+ H2О+е →Ni(OH)2+ОН.

На аноде:

  • Во время зарядки: М+ H2О+е →МH+ОH.
  • Во время разряда: МН+OH →М+. H2О+е.

Конструкция аккумуляторов

Основной выпуск никель металлогидридных аккумуляторов производится в двух формах: призматической и цилиндрической.

Цилиндрические Ni-MH элементы

В конструкцию входят:

  • цилиндрический корпус;
  • крышка корпуса;
  • клапан;
  • клапанный колпачок;
  • анод;
  • коллектор анода;
  • катод;
  • кольцо диэлектрическое;
  • сепаратор;
  • изоляционный материал.

Анод с катодом разделены между собой с помощью сепаратора. Данная конструкция свернута рулоном и помещена в корпус аккумулятора. Герметизацию производят при помощи крышки и прокладки.

На крышке предусмотрен предохранительный клапан.

Он предназначен для того, чтобы при повышении давления внутри аккумулятора до 4 МПа, при срабатывании выпускал излишки летучих соединений, образующихся при химических реакциях.

Многие встречались мокрыми или покрывшимися шапкой источниками питания. Это результат работы клапана при перезаряде. Характеристики меняются и дальнейшая эксплуатация их невозможна. При его отсутствии аккумуляторы просто вспухают и полностью теряют свою работоспособность.

Призматические Ni-MH элементы

В конструкцию входят следующие элементы:

  1. прямоугольный корпус;
  2. крышка такой же формы;
  3. клапан;
  4. клапанный колпачок;
  5. прокладка изолятор;
  6. изолятор;
  7. анод;
  8. катод;
  9. сепаратор.

Призматическая конструкция предполагает поочередное размещение анодов и катодов с разделением их сепаратором. Собранные таким образом в блок, они помещаются в корпус. Корпус изготовляется пластиковым или же металлическим. Крышка герметизирует конструкцию. Для безопасности и контроля за состоянием элемента питания на крышке размещают датчик давления и клапан.

В качестве электролита используется щелочь – смесь гидроксида калия (КОН) и гидроксида лития (LiOH).

Для Ni-MH элементов изолятором выступает полипропилен или же нетканый полиамид. Толщина материала составляет 120–250 мкм.

Для производства анодов производители используют металлокерамику. Но в последнее время для снижения стоимости используют войлок и пенополимеры.

При производстве катодов используются различные технологии:

  1. ламельная;
    • Ламельная – состав, имеющий состояние порошка методом прессования, вводят в сетку из никеля.
  2. пеноникелеванием;
    • Пеноникелевание – состав, имеющий состояние пасты, помещают в пористую пеноникелевую основу.
  3. фольгованием;
    • Фольгование – состав наносится на фольгу из токопроводящей стали или никеля с последующим просушиванием и прессованием. Металлизированная фольга предварительно подвергается перфорированию.
  4. вальцеванием;
    • Вальцевание – активный состав закрепляется на решетке из никеля или сетке из меди при помощи прокатывания (вальцевания).
  5. спечением.
    • Спечение – порошок, нанесенный на сетку из никеля, спекается при высокой температуре в водородной атмосфере.

Характеристики

Напряжение. В свободном состоянии внутренняя цепь аккумулятора разомкнута. И ее измерить довольно трудно. Трудности вызывает равновесие потенциалов на электродах. Но после полной зарядки по прошествии суток напряжение на элементе составляет 1,3–1,35В.

Напряжение разряда при токе, не превышающем 0,2А и температуре окружающего воздуха 25°С составляет 1,2–1,25В. Минимальное значение – 1В.

Энергетическая емкость, Вт∙ч/кг:

  • теоретическая – 300;
  • удельная – 60–72.

Другие параметры:

  • Электрическая движущая сила (ЭДС) – 1,25В.
  • Энергетическая плотность – 150 Вт∙ч/дм3.
  • Температура эксплуатирования — от -60 до +55°С.
  • Длительность эксплуатирования – до 500 циклов.

Правильная зарядка и контроль

Для накопления энергии используются зарядные устройства. Основной задачей недорогих моделей является подача стабилизированного напряжения. Для подзарядки никель металлогидридных аккумуляторов требуется напряжение порядка 1,4–1,6В. При этом сила тока должна составлять 0,1 емкости аккумулятора.

Применяются быстрая и ускоренная зарядки. Процесс быстрой зарядки составляет 1 час. На ускоренный процесс уходит до 5 часов. Столь интенсивный процесс контролируется изменением напряжения и температуры.

Процесс обычной зарядки продолжается до 16 часов. Для уменьшения продолжительности времени зарядки, современные зарядники обычно производятся трехступенчатыми. Первая ступень – быстрый заряд током равным номинальной емкости аккумулятора или выше. Вторая ступень — током 0,1 емкости. Третья ступень – током 0,05–0,02 от емкости.

Должен осуществляться контроль за процессом зарядки. Перезаряд губительно сказывается на состоянии аккумуляторов. Высокое газообразование приведет к срабатыванию предохранительного клапана и электролит вытечет.

Контроль производится по следующим методикам:

  • по температуре, которая закладывается в памяти зарядника и по достижении ее значения переводит процесс быстрого заряда на другую ступень;
  • по изменению температуры в единицу времени;
  • по времени;
  • по давлению;
  • по напряжению;
  • по падению напряжения.

Достоинства и недостатки присущие Ni-MH элементам

Аккумуляторы последнего поколения не страдают такой болезнью, как «эффект памяти». Но после длительного хранения (более 10 суток) перед началом зарядки его все-таки необходимо полностью разрядить. Вероятность появления эффекта памяти появляется от бездействия.

Увеличенная емкость запаса энергии

Экологичность обеспечивают современные материалы. Переход на них значительно облегчил утилизацию отработанных элементов.

Что касается недостатков, то их тоже немало:

  • высокое тепловыделение;
  • температурный диапазон работы мал (от -10 до +40°С) хотя производители заявляют другие показатели;
  • небольшой интервал рабочего тока;
  • высокий саморазряд;
  • несоблюдение полярности выводит аккумулятор из строя;
  • хранить недолгое время.

Подбор по емкости и эксплуатация

Перед тем как купить Ni-MH аккумуляторы следует определиться с их емкостью. Высокие показатели не решение проблемы нехватки энергии. Чем выше емкость элемента, тем сильнее выражено саморазряжение.

Цилиндрические никель металлогидридные элементы в большом количестве выпускаются размерами, которые имеют маркировку AA или AAA. В народе прозванные как пальчиковые – aaa и мизинчиковые – aa. Купить их можно во всех электромагазинах и магазинах, торгующих электроникой.

Как показывает практика, аккумуляторы емкостью 1200–3000 mAh, имеющие размер aaa, используются в плейерах, фотоаппаратах и других электронных устройствах с большим потреблением электричества.

Ранее широко распространенные металлгидридные аккумуляторы использовались во всех портативных устройствах. Одиночные элементы устанавливались в бокс, разработанный производителем для удобства установки. Имели они обычно маркировку EN. Купить их можно было только у официальных представителей производителя.

Источник: https://instrument.guru/elektronika/nikel-metallogidridnye-akkumulyatory.html

Как правильно заряжать?

Никель-металлгидридные аккумуляторы пришли на смену никель-кадмиевым и никель-водородным батареям.

В Ni-MH аккумуляторах положительный электрод, как и в никель-кадмиевом аккумуляторе, изготавливается из оксидно-никелевого сплава, а отрицательный — из сплава никеля с редкоземельными металлами, поглощающий водород.

Главным материалом, определяющим характеристики Ni-MH аккумулятора, является именно водород-абсорбирующий сплав, который может поглощать объем водорода, в 1000 раз превышающий свой собственный объем.

Эти сплавы состоят из двух или нескольких металлов, один из которых абсорбирует водород, а другой является катализатором, способствующим диффузии атомов водорода в решетку металла.

Количество возможных комбинаций применяемых металлов практически не ограничено, что дает возможность оптимизировать свойства сплава.

Применение этих материалов для изготовления отрицательного электрода позволило повысить в 1,3-2 раза закладку активных масс положительного электрода, который и определяет емкость аккумулятора.

Поэтому никель-металлгидридные аккумуляторные батареи отличает высокая энергетическая плотность по сравнению с предшественниками.

Так как при их производстве используются нетоксичные материалы, то легче решается и проблема утилизации отработанных аккумуляторов.

У Ni-MH аккумуляторов, в отличие от Ni-Cd, нет «эффекта памяти».

Технические характеристики

Наработка (число разрядно-зарядных циклов) и срок службы Ni-MH аккумулятора в значительной мере определяются условиями эксплуатации.

  1. Наработка понижается с увеличением глубины и скорости разряда и зависит от скорости заряда.
  2. Ускоренный (за 4 — 5 часов) и быстрый (за 1 час) заряды возможны для Ni-MH аккумуляторов, имеющих высокоактивные электроды.
  3. В зависимости от типа, режима работы и условий эксплуатации аккумуляторы обеспечивают от 500 до 1000 разрядно-зарядных циклов при глубине разряда 80% и имеют срок службы от 3 до 5 лет.

С повышением нагрузки (уменьшение времени разряда) и при понижении температуры емкость Ni-MH аккумулятора уменьшается. Особенно заметно действие снижения температуры на емкость при больших скоростях разряда.

Условия эксплуатации и хранения

При хранении происходит саморазряд Ni-MH аккумулятора. За месяц при комнатной температуре потеря емкости составляет 20-30%, а при дальнейшем хранении потери уменьшаются до 3-7% в месяц. Скорость саморазряда повышается при увеличении температуры. Ni-MH аккумуляторы чувствительны к перезаряду.

В течение заряда Ni-MH аккумуляторов выделяется теплота, поэтому в целях предупреждения перегрева батареи из Ni-MH аккумуляторов в процессе быстрого заряда и/или значительного перезаряда в них устанавливают термопредохранители или термореле.

Ni-MH аккумуляторы имеют сравнительно узкий температурный диапазон эксплуатации: большая их часть неработоспособна при температуре ниже -10 градусов и выше +40 градусов.

Применение в гибридных автомобилях

В гибридных автомобилях применяются Ni-MH аккумуляторы прямоугольной конструкции.

  • В них положительные и отрицательные электроды размещены поочередно, а между ними размещается сепаратор.
  • Блок электродов вставлен в металлический или пластмассовый корпус и закрыт герметизирующей крышкой.
  • В Ni-MH аккумуляторах используется щелочной электролит, состоящий из КОН с добавкой LiOH.
  • Хотя большинство специалистов уверены, что будущее за литий-ионными батареями, на многих гибридных автомобилях используются никель-металлгидридные аккумуляторы.
  • Они существенно дешевле, а их производство технологически отработано.

Проигрывают же они в весовом качестве (отношении запасенной энергии к массе) и диапазоне зарядки (от 40 до 60%) — всего 20% общей емкости.

Первые работы по созданию никель-кадмиевых аккумуляторов начались еще в 50-х годах. Однако только к середине 70-х был созданы сплавы, позволяющие абсорбировать водород в достаточно больших объемах. Правда, аккумуляторы, созданные на их основе, имели недостаточную емкость по сравнению с никель-кадмиевыми.

Однако исследования не прекращались, в результате чего был создан сплав La-Ni-Co, позволяющий электрохимически обратимо абсорбировать водород на протяжении более 100 циклов. В промышленное производство Ni-MH аккумуляторы поступили в середине 80-х годов.

С тех пор их конструкция постоянно совершенствуется путем применения новых сплавов. Сплавы никеля с металлами редкоземельной группы могут обеспечить до 2000 циклов заряда-разряда аккумулятора при понижении емкости отрицательного электрода не более чем на 30 %.

Читайте также:  Что такое гибридные аккумуляторы, их плюсы и минусы

Источник: http://avtonov.info/nikel-metallgidridnye-akkmulatory

Как восстановить?

Сфера применения электрических аккумуляторов довольно-таки широка. Небольшими батареями комплектуются привычные для всех бытовые приборы, АКБ слегка больших размеров оснащаются автомобили, ну а уж очень крупные и ёмкостные аккумуляторы монтируют в нагруженные работой промышленные станции.

Казалось бы, что помимо пользовательского назначения у разных видов АКБ может быть общего? Однако на самом деле сходств у подобных батарей более чем достаточно. Пожалуй, одним из основных среди возможных сходств аккумуляторов является принцип организации их работы. В сегодняшнем материале наш ресурс решил рассмотреть именно один из таковых.

 

Если быть точнее, то ниже речь пойдет о функционировании и правилах эксплуатации никель-металлогидридных батарей.

История появления никель-металлогидридных АКБ

В итоге, специалистам лишь к концу 70-х годов удалось сначала спроектировать, а затем создать и полноценно испытать более-менее качественные никель-металлогидридные батареи. Главное отличие нового типа АКБ от предшественников заключалось в том, что он имел строго определённые места для скопления основной массы водорода.

Говоря точнее, скопление вещества происходило в сплавах нескольких металлов, находящихся на электродах аккумулятора.

Состав сплавов имел такую структуру, что один или несколько металлов накапливали водород (иногда в несколько тысяч раз превышающих их объём), а другие металлы выступали в роли катализаторов электролитических реакций, обеспечивая переход водородного вещества в металлическую решётку электродов.

Сделанный аккумулятор, имеющий водородно-металлогидридный анод и никелевый катод, получил аббревиатуру «Ni-MH» (от названия токопроводящих, накапливающих веществ).

Работают подобные АКБ на щелочном электролите и обеспечивают отличный цикл «заряд-разряд» — до 2 000 тысяч для одной полноценной батареи.

Несмотря на это, путь к проектировке аккумуляторов Ni-MH был нелёгок, а существующие на данный момент образцы до сих пор модернизируются. Основной вектор модернизации направлен на увеличение энергетической плотности батарей.

Отметим, что сегодня никель-металлогидридные АКБ в большинстве своём производятся на основе сплава металлов «LaNi5». Первый образец подобных аккумуляторов был запатентован в 1975 году и стал активно использоваться в широкой промышленности.

Современные никель-металлогидридные батареи имеют высокую энергетическую плотность и состоят из совершенно нетоксичного сырья, что упрощает их утилизацию.

Пожалуй, именно из-за данных преимуществ они стали очень популярны во многих сферах, где требуется долгое хранение электрического заряда.

Устройство и принцип работы никель-металлогидридной батареи

Никель-металлогидридные аккумуляторы всех размерностей, ёмкостей и предназначений выпускают в двух основных типах форм – призматической и цилиндрической. Вне зависимости от формы, подобные АКБ состоят из следующих обязательных элементов:

  • металлогидридных и никелевых электродов (катодов и анодов), образующих гальванический элемент сеточной структуры, который отвечает за движение и накопление электрического заряда;
  • сепараторных областей, разделяющих электроды и также участвующих в процессе электролитических реакций;
  • выводных контактов, отдающих во внешнюю среду накопленный заряд;
  • крышки с вмонтированным в неё клапаном, необходимой для сброса излишнего давления из полостей аккумулятора (давления свыше 2-4 мегапаскаль);
  • термозащитного и крепкого корпуса, вмещающего описанные выше элементы батареи.

Конструкция никель-металлогидридных аккумуляторов, как и многих других типов данного устройства, довольно-таки проста и особых сложностей в рассмотрении не представляет. Наглядно это показано на следующих конструктивных схемах АКБ:

Принципы работы рассматриваемых АКБ, в отличие от их общей конструктивной схемы, выглядят слегка сложнее. Для понимания их сути давайте обратим внимание на поэтапное функционирование никель-металлогидридных аккумуляторов. В типовом варианте этапы работы у данных батарей следующие:

  1. Положительный электрод – анод, осуществляет окислительную реакцию с абсорбцией водорода;
  2. Отрицательный электрод – катод, реализует восстановительную реакцию в дисабсорбицией водорода.

Говоря простым языком, электродная сетка организует упорядоченное движение частиц (электродов и ионов) посредством конкретных химических реакций.

При этом непосредственно электролит в основной реакции выделения электричества не участвует, а включается в работу лишь при определённых обстоятельствах функционирования аккумуляторов Ni-MH (например, при перезарядке, реализуя реакцию циркуляции кислорода).

Более подробно рассматривать принципы работы никель-металлогидридных АКБ не будем, так как для этого требуются специальные химические знания, которых у многих читателей нашего ресурса нет.

При желании узнать о принципах работы батарей в больших подробностях стоит обратиться к технической литературе, которая максимально подробно освещает течение каждой реакции на концах электродах как при заряде батарей, так и при их разряде.

Характеристики стандартного АКБ Ni-MH можно увидеть в следующей таблице (столбец посередине):

Правила эксплуатации

Любой аккумулятор – относительно неприхотливое в обслуживании и эксплуатации устройство. Несмотря на это, его стоимость зачастую высока, поэтому каждый владелец той или иной батареи заинтересован в увеличении её срока службы. Относительно АКБ формации «Ni-MH» продлить эксплуатационный период не столь сложно. Для этого достаточно:

  • Во-первых, соблюдать правила зарядки аккумулятора;
  • Во-вторых, правильно его эксплуатировать и хранить при простое.

О первом аспекте обслуживания АКБ поговорим чуть позже, ну а сейчас обратим внимание на основной перечень правил эксплуатации никель-металлогидридных батарей. Шаблонный список данных правил таков:

  • Хранение никель-металлогидридных аккумуляторов должно осуществляться только в их заряженном состоянии на уровне 30-50 %;
  • Строго запрещается перегревать АКБ Ni-MH, так как по сравнению с теми же никель-кадмиевыми батареями, рассматриваемые нами намного чувствительней к нагреву. Перегруженность работой отрицательно сказывается на всех процессах, протекающих в полостях и на выходах аккумулятора. Особенно страдает токоотдача;
  • Никогда не перезаряжайте никель-металлогидридные батареи. Всегда придерживайтесь правил зарядки, описанных в настоящей статье или отражённых в технической документации к аккумулятору;
  • В процессе слабой эксплуатации или длительном хранении «тренируйте» АКБ. Зачастую хватает периодически проводимого цикла «заряд-разряд» (порядка 3-6 раз). Также подобной «тренировке» желательно подвергать новые батареи Ni-MH;
  • Хранить аккумуляторы никель-металлогидридной формации требуется в комнатном температурном режиме. Оптимальная температура – 15-23 градусов по Цельсию;
  • Старайтесь не разряжать аккумулятор до минимальных пределов – напряжение, меньшее 0,9 Вольт для каждой пары «катод-анод». Восстановлению никель-металлогидридные АКБ, конечно, поддаются, но желательно их не доводить до «мёртвого» состояния (о том, как восстановить батарею, также поговорим ниже);

Следите за конструктивным качеством батареи. Не допускается наличие серьёзных дефектов, недостаток электролита и тому подобные вещи. Рекомендуемая периодичность проверки АКБ равняется 2-4 неделям;

В случае с использованием больших, стационарных батарей также важно придерживаться правил:

  • их текущего ремонта (не менее раза в год):
  • капитального восстановления (не менее раза в 3 года);
  • надёжного крепления АКБ в месте использования;
  • наличия освещения;
  • использования правильных зарядных устройств;
  • и соблюдения техники безопасности использования подобных аккумуляторов.

Правила зарядки

Раннее было отмечено, что правила эксплуатации – это далеко не единственное, что требуется для достижения максимального эксплуатационного срока никель-металлогидридных АКБ.

Помимо грамотного использования, подобные батареи крайне важно грамотно заряжать. Вообще, ответить на вопрос – «Как правильно заряжать аккумулятор Ni-MH?», довольно-таки сложно.

Дело в том, что каждый тип сплавов, используемый на электродах батареи, требует определённых правил данного процесса.

Обобщив и усреднив их, можно выделить следующие фундаментальные основы зарядки никель-металлогидридных аккумуляторов:

  • Во-первых, требуется соблюдать правильное время зарядки. Для большинства АКБ Ni-MH оно составляет либо 15 часов при зарядном токе около 0,1 С, либо 1-5 часов при зарядном токе в пределах 0,1-1 С для батарей с высокоактивными электродами. Исключениями являются восстанавливаемые аккумуляторы, которые могут заряжаться более 30 часов;
  • Во-вторых, важно отслеживать температуру батареи в процессе зарядки. Многие производители не рекомендуют превышать температурный максимум в 50-60 градусов по Цельсию;
  • И в-третьих, следует учитывать непосредственно порядок проведения зарядки. Оптимальным считается такой подход, когда АКБ разряжается номинальным током до напряжения на выходах в 0,9-1 Вольт, после чего заряжается на 75-80 % от своей максимальной ёмкости. При этом важно учитывать, что при быстрой зарядке (подаваемый ток более 0,1) важно организовать предзарядку с подачей высокого тока на аккумулятор около 8-10 минут. После этого процесс зарядки стоит организовать с плавным повышением подаваемого на АКБ напряжения до 1,6-1,8 Вольт. К слову, при обычной подзарядке никель-металлогидридного аккумулятора напряжение зачастую не изменяется и в норме составляет 0,3-1 Вольт.

Восстановление аккумулятора

Наряду с дороговизной и быстрым саморазрядом, у аккумуляторов Ni-MH есть ещё один недостаток – ярко выраженный «эффект памяти».

Его суть заключается в том, что при систематичной зарядке не полностью разряженной батареи она как бы запоминает это и с течением времени существенно теряет в своей ёмкости.

Для нейтрализации подобных рисков владельцам подобных АКБ требуется заряжать максимально разряженные батареи, а также периодически «тренировать» их путём процесса восстановления.

Восстанавливать никель-металлогидридные аккумуляторы при «тренировке» или при их сильном разряде необходимо следующим образом:

  1. В первую очередь, необходимо подготовиться. Для восстановления потребуются:
    • качественный и, желательно, умный зарядный прибор;
    • инструменты для замера напряжения и сила тока;
    • любое устройство, способное потреблять энергию с АКБ.
  2. После подготовки можно уже задаться вопросом по поводу того, как восстановить батарею. Сначала необходимо по всем правилам зарядить аккумулятор, а затем его разрядить по напряжения на выходах батареи в 0,8-1 Вольт;
  3. Затем начинается непосредственно восстановление, которое, опять же, должно проводится в соответствии со всеми правилами зарядки никель-металлогидридных аккумуляторов. Стандартный процесс восстановления может быть проведён двумя способами:
    • Первый – если АКБ подаёт признаки «жизни» (как правило, при разряде на уровне 0,8-1 Вольт). Зарядка проходит с постоянным увеличением подаваемого напряжение с 0,3 до 1 Вольта с силой тока 0,1 С в течение 30-60 минут, после чего вольтаж остаётся неизменным, а сила тока увеличивается до 0,3-0,5 С;
    • Второй – если АКБ не подаёт признаков «жизни» (при разряде менее 0,8 Вольт). В таком случае зарядка осуществляется с 10-минутной пред-зарядкой высоким током на протяжении 10-15 минут. После этого проводятся описанные выше действия.

Пожалуй, на этом повествование по сегодняшней теме можно завершать. Надеемся, представленный выше материал был для вас полезен и дал ответы на интересующие вопросы.

Не забудьте поделиться этой страницей с друзьямиИ подписаться на нашу группу

Источник: https://SwapMotor.ru/ustrojstvo-dvigatelya/nikel-metallogidridnye-akkumulyatory.html

Аккумуляторы на основе никеля

Категория: Поддержка по аккумуляторным батареямОпубликовано 23.03.2016 01:31Автор: Abramova Olesya

В течение целых пятидесяти лет портативные устройства для автономной работы могли полагаться исключительно на никель-кадмиевые источники питания.

Но кадмий очень токсичный материал, и в 1990-х на смену никель-кадмиевой технологии пришла более экологичная никель-металл-гидридная. По сути эти технологии очень схожи, и большинство характеристик никель-кадмиевых аккумуляторов передались по наследству никель-металл-гидридным.

  1. Но тем не менее, для некоторых применений никель-кадмиевые аккумуляторы остаются незаменимыми и используются по сей день.
  2. Изобретенный Вальдмаром Юнгнером в 1899 году, никель-кадмиевый аккумулятор имел несколько преимуществ по сравнению со свинцово-кислотным, единственным существовавшим тогда аккумулятором, однако был более дорогим из-за стоимости материалов.
  3. Развитие этой технологии было довольно медленным, но в 1932 году был сделан значительный прорыв — в качестве электрода стал использоваться пористый материал с активным веществом внутри.

Дальнейшее усовершенствование было сделано в 1947 году и решило проблему газопоглощения, что позволило создать современную герметичную необслуживаемую никель-кадмиевую батарею.

На протяжении многих лет именно NiCd батареи служили в качестве источников питания для двухсторонних радиостанций, экстренной медицинской техники, профессиональных видеокамер и электроинструмента.

В конце 1980-х были разработаны ультраемкие NiCd аккумуляторы, которые потрясли мир своей емкостью, на 60% превышающей показатель стандартной батареи.

Это было достигнуто благодаря размещению большего количества активного вещества в батарее, но добавились и недостатки — повысилось внутреннее сопротивление и уменьшилось количество циклов заряда/разряда.

Читайте также:  Что такое никель─железные аккумуляторы?

NiCd стандарт остается одним из самых надежных и непритязательных среди аккумуляторных батарей, и авиационная отрасль остается верной этой системе. Тем не менее, долговечность этих аккумуляторов зависит от надлежащего обслуживания. NiCd, и отчасти NiMH аккумуляторы, подвержены эффекту “памяти”, который приводит к потере емкости, если периодически не делать полный цикл разряда.

При нарушении рекомендованного режима зарядки аккумулятор будто помнит, что в предыдущие циклы работы его емкость не была использована полностью, и при разряде отдает электроэнергию только до определенного уровня.

Таблица 1: Преимущества и недостатки никель-кадмиевых батарей.

Преимущества Надежный; большое количество циклов при правильном обслуживанииЕдинственный аккумулятор, способный к ультрабыстрой зарядке с минимальным стрессомХорошие нагрузочные характеристики, прощает их преувеличениеДлительный срок хранения; возможность хранения в разряженном состоянииОтсутствие специальных требований к хранению и транспортировкеХорошая производительность при низких температурахСамая низкая стоимость одного цикла работы среди всех аккумуляторов

Доступен в широком диапазоне размеров и вариантов исполнения

Недостатки Относительно низкая удельная энергоемкость в сравнении с более новыми системамиЭффект “памяти”; необходимость периодического обслуживания для его избежанияКадмий является токсичным материалом, необходима специальная утилизацияВысокий саморазряд; нуждается в подзарядке после хранения

Низкое напряжение ячейки в 1,2 вольта, требует построения многоячеечных систем для обеспечения высокого напряжения

Исследования никель-металл-гидридной технологии начались еще в 1967 году.

  1. Однако нестабильность металл-гидрида тормозила разработку, что в свою очередь привело к развитию никель-водородной (NiH) системы.
  2. Новые гидридные сплавы, обнаруженные в 1980-х, решили проблемы с безопасностью, и позволили создать аккумулятор с удельной энергоемкостью на 40% большей, чем у стандартного никель-кадмиевого.
  3. Никель-металл-гидридные аккумуляторы не лишены недостатков. Например, их процесс зарядки более сложен, чем у NiCd. С саморазрядом в 20% за первые сутки и последующей ежемесячной в 10%, NiMH занимают одну из лидирующих позиций в своем классе.
  4. Модифицируя гидридный сплав, можно добиться снижения саморазряда и коррозии, но это добавит недостаток в виде уменьшения удельной энергоемкости.

Но в случае использования в электротранспорте, эти модификации весьма полезны, так как повышают надежность и увеличивают срок службы батарей.

NiMH батареи в данный момент являются одними из самых легкодоступных.

Такие гиганты отрасли как Panasonic, Energizer, Duracell и Rayovac признали необходимость присутствия на рынке недорогого и долговечного аккумулятора, и предлагают никель-металл-гидридные источники питания разных типоразмеров, в частности АА и ААА. Производителями тратятся большие усилия, чтобы отвоевать часть рынка у щелочных батарей.

  1. В этом сегменте рынка никель-металл-гидридные батареи являются альтернативой перезаряжаемым щелочным батареям, которые появились еще в 1990 году, но из-за ограниченного жизненного цикла и слабых нагрузочных характеристик не снискали успеха.
  2. В таблице 2 сравниваются удельная энергоемкость, напряжение, саморазряд и время работы батареек и аккумуляторов потребительского сегмента. Представленные в АА, ААА и других типоразмерах, эти источники питания могут использоваться в портативных устройствах.
  3. Даже если у них может немного различается номинальный вольтаж, состояние разряда, как правило, наступает при одинаковом для всех фактическом значении напряжения в 1 В.
  4. Эта широта значений напряжения допустима, так как портативные устройства имеют некоторую гибкость в плане диапазона напряжений. Главное – необходимо вместе использовать только однотипные электрические элементы.

Проблемы безопасности и несовместимость напряжения препятствуют развитию литий-ионных батарей в АА и ААА типоразмере.

Таблица 2: Сравнение различных батарей типоразмера АА.

Тип батареи Емкость АА версии Напряжение Количество остаточной энергии вследствие саморазряда после 1 года Примерное количество возможных снимков цифровой камерой
NiMH 2700 мАч, перезаряжаемая 1,2В 50% 600 снимков
Eneloop* 2400 мАч, перезаряжаемая 1,2В 85% 500 снимков
Обычная щелочная 2800 мАч, неперезаряжаемая 1,5В 95% 10-летний срок хранения 100 снимков
Перезаряжаемая щелочная 2000 мАч, уменьшается при последующих зарядках 1,4В 95% 100 снимков
Литиевая (Li-FeS2) 2500-3400 мАч, неперезаряжаемая 1,5В Крайне низкий саморазряд, 10-летний срок хранения 690 снимков

* Eneloop является торговой маркой корпорации Sanyo, основанной на NiMH системе.

Высокий показатель саморазряда NiMH является причиной продолжающейся озабоченности потребителей. Фонарь или портативное устройство с батареей NiMH разрядится, если не пользоваться им несколько недель.

Предложение заряжать устройство перед каждым использованием навряд ли найдет понимание, особенно в случае с фонарями, которые позиционируются как источники резервного освещения.

Преимущество щелочной батареи со сроком хранения в 10 лет тут видится бесспорным.

В никель-металл-гидридной батарее от Panasonic и Sanyo под торговой маркой Eneloop удалось значительно уменьшить саморазряд. Eneloop может храниться без подзарядки в шесть раз дольше чем обычная NiMH. Но недостатком такой улучшенной батареи является немного меньшая удельная энергоемкость.

В таблице 3 приведены преимущества и недостатки никель-металл-гидридной электрохимической системы. В таблице не учтены характеристики Eneloop и других потребительских торговых марок.

Таблица 3: Преимущества и недостатки NiMH батарей.

Преимущества На 30-40 процентов большая емкость по сравнению с NiCdМенее склонны к эффекту “памяти”, могут быть восстановленыПростые требования к хранению и транспортировке; отсутствие регулирования этих процессовЭкологически чистые; содержат только умеренно токсичные материалыСодержание никеля делает утилизацию самоокупающейся

Широкий диапазон рабочих температур

Недостатки Ограниченный срок службы; глубокие разряды способствуют ее уменьшениюСложный алгоритм зарядки; чувствительны к перезарядуОсобые требования к режиму подзарядкиВыделяют тепло во время быстрой зарядки и разряда мощной нагрузкойВысокий саморазряд

Кулоновская эффективность на уровне 65% (для сравнения у литий-ионных — 99%)

После изобретения в 1899 году никель-кадмиевого аккумулятора шведский инженер Вальдмар Юнгнер продолжил исследования и пытался заменить дорогой кадмий более дешевым железом. Но низкая эффективность заряда и чрезмерное газообразование водорода заставили его отказаться от дальнейшего развития NiFe батареи. Он даже не стал патентовать эту технологию.

  • В 1901 году Томас Эдисон продолжил развитие этой электрохимической системы в качестве замены свинцово-кислотному аккумулятору для электрических транспортных средств.
  • Эдисон был уверен, что NiFe намного превосходит свинцово-кислотную систему и рассчитывал на большой успех на зарождавшемся рынке электротранспорта.
  • Но в итоге автомобили с двигателем внутреннего сгорания полностью заняли рынок, а железо-никелевая батарея не заинтересовала производителей даже в роли стартерного аккумулятора или как источник электричества для осветительных приборов.

Железо-никелевый аккумулятор (NiFe) использует в качестве катода гидрат окиси никеля, анода — железо, а электролита — водный раствор гидроксида калия. Ячейка такого аккумулятора генерирует напряжение в 1,2 В. NiFe устойчив к излишнему перезаряду и глубокому разряду; может эксплуатироваться в качестве резервного источника питания в течение более чем 20 лет.

Устойчивость к вибрациям и высоким температурам сделали этот аккумулятор самым используемым в горной промышленности в Европе; также он нашел свое применение для обеспечения питания железнодорожной сигнализации, также используется как тяговой аккумулятор для погрузчиков.

Можно отметить, что во время Второй мировой войны именно железо-никелевые батареи использовались в немецкой ракете “Фау-2”.

  1. NiFe имеет низкую удельную мощность — примерно 50 Вт/кг. Также к недостаткам стоит отнести плохую производительность при низких температурах и высокий показатель саморазряда (20-40 процентов в месяц).
  2. Именно это, вкупе с высокой стоимостью производства, побуждает производителей оставаться верными свинцово-кислотным батареям.
  3. Но железо-никелевая электрохимическая система активно развивается и в недалеком будущем способна стать альтернативой свинцово-кислотной в некоторых отраслях.

Перспективно выглядят экспериментальная модель ламельной конструкции, в ней удалось снизить саморазряд аккумулятора, он стал практически невосприимчив к пагубному воздействию пере- и недозарядки, а его срок службы ожидается на уровне 50 лет, что сопоставимо с 12-летним сроком службы свинцово-кислотной батареи в режиме работы при глубоких циклических разрядах.

Ожидаемая цена такой NiFe батареи будет сравнима с ценой литий-ионной, и всего в четыре раза превышать цену свинцово-кислотной.

NiFe аккумуляторы, равно как и NiCd и NiMH, требуют особых правил зарядки — кривая напряжения имеет синусоидальную форму.

  1. Соответственно, использовать зарядное устройство для свинцово-кислотного или литий-ионного аккумулятора не выйдет, это даже может навредить.
  2. Как и все батареи на основе никеля, NiFe боятся перезаряда — он вызывает разложение воды в электролите и приводит к ее потере.
  3. Сниженную в результате неправильной эксплуатации емкость такого аккумулятора можно восстановить путем приложения высоких токов разрядки (соразмерных значению емкости аккумулятора).
  4. Данную процедуру необходимо проводить до трех раз с длительностью периода разряда в 30 минут. Также следует следить за температурой электролита — она не должна превышать 46°С.

Никель-цинковый аккумулятор похож на никель-кадмиевый тем, что использует щелочной электролит и никелевый электрод, но отличается по напряжению — NiZn обеспечивает 1,65 В на ячейку, в то время как NiCd и NiMH имеют показатель в 1,20 В на ячейку.

Заряжать NiZn аккумулятор необходимо постоянным током с значением напряжения 1,9 В на ячейку, также стоит помнить, что этот вид аккумуляторов не рассчитан для работы в режиме подзарядки. Удельная энергоемкость составляет 100Вт/кг, а количество возможных циклов — 200-300 раз.

NiZn не имеет в своем составе токсичных материалов и может быть легко утилизирован. Выпускается в различных типоразмерах, в том числе в АА.

В 1901 году Томас Эдисон получил патент США на перезаряжаемую никель-цинковую батарею. Позже его разработки были усовершенствованны ирландским химиком Джеймсом Драммом, который установил эти аккумуляторы на автомотрисы, которые курсировали по маршруту Дублин-Брей с 1932 по 1948 год.

NiZn не получил должного развития из-за сильного саморазряда и короткого жизненного цикла, вызванного образованиями дендритов, что также часто приводило к короткому замыканию.

  • Но совершенствование состава электролита уменьшило эту проблему, что дало повод снова рассматривать NiZn для коммерческого использования.
  • Низкая стоимость, высокая выходная мощность и широкий диапазон рабочих температур делают эту электрохимическую систему крайне привлекательной.
  • Когда в 1967 началась разработка никель-металл-гидридных батарей, исследователи столкнулись с нестабильностью гидритов металла, что вызвало сдвиг в сторону развития никель-водородного (NiH) аккумулятора.
  • Ячейка такого аккумулятора включает в себя инкапсулированный в сосуд электролит, никелевый и водородный (водород заключен в стальной баллон под давлением в 8207 бар) электроды.

NiH имеет номинальное напряжение ячейки в 1,25 В, а удельная энергоемкость составляет 40-75 Вт/кг.

Преимуществами являются длительный срок службы, даже при глубоких циклах разряда, устойчивость к окружающим воздействиям вследствие низкого показателя коррозии, минимальный саморазряд и выдающейся диапазон рабочих температур — от -28°С до 54°С.

Эти свойства делают NiH батареи идеальным решением для использования в спутниках. Ученые пытались разработать версии и для наземного использования, но низкая удельная энергоемкость и высокая стоимость приводят к нецелесообразности этого направления.

Стоимость одной ячейки такого аккумулятора может достигать тысячи долларов. В свое время NiMH батареи заменили в спутниках никель-кадмиевые, сейчас же существует тенденция к замене NiH на литий-ионные. (Смотрите: Альтернативные электрохимические системы).

Источник: https://best-energy.com.ua/support/battery/bu-203

Ссылка на основную публикацию
Adblock
detector