Эффективные способы использования энергии солнца на земле

Солнце является одним из возобновляемых альтернативных источников энергии. На сегодняшний день альтернативные источники тепла широко используют в аграрном хозяйстве и в бытовых нуждах населения.

Использование энергии солнца на земле играет важную роль в жизни человека. При помощи своего тепла солнце, как источник энергии, нагревает всю поверхность нашей планеты. Благодаря его тепловой мощности дуют ветра, нагреваются моря, реки, озера, существует все живое на земле.

Способы  использования энергии солнца на земле

Возобновляемые источники тепла, люди начали использовать еще много лет назад, когда современных технологий еще не существовало. Солнце является самым доступным на сегодняшний день поставщиком тепловой энергии на земле.

Сферы использования солнечной энергии

С каждым годом применение энергии солнца набирает все больше популярности. Еще несколько лет назад ее применяли в целях подогрева воды для дачных домов, летних душей, а сейчас возобновляемые источники тепла применяют для выработки электричества и горячего водоснабжения жилых домов и промышленных объектов.

На сегодняшний день возобновляемые источники тепла используют в следующих сферах:

  • в аграрном хозяйстве, в целях электрообеспечения и отопления парников, ангаров и других построек;
  • для электроснабжения спортивных объектов и медицинских учреждений;
  • в сфере авиационной и космической промышленности;
  • в освещении улиц, парков, а также других городских объектов;
  • для электрификации населенных пунктов;
  • для отопления, электроснабжения и горячего водоснабжения жилых домов;
  • для бытовых нужд.

Особенности применения

Свет, который излучает солнце на земле, при помощи пассивных, а также активных систем превращается в тепловую энергию.

К пассивным системам относятся здания, при строительстве которых применяют такие стройматериалы, которые наиболее эффективно поглощают энергию солнечной радиации.

В свою очередь, к активным системам относятся коллекторы, преобразовывающие солнечную радиацию в энергию, а также фотоэлементы, конвертирующие ее в электричество. Рассмотрим подробнее как правильно использовать возобновляемые источники тепла.

Пассивные системы

К таким системам относят солнечные здания. Это здания, построенные с учетом всех особенностей местной климатической зоны.

  1. Для их возведения применяют такие материалы, которые дают возможность максимально использовать всю тепловую энергию для обогрева, охлаждения, освещения жилых и промышленных помещений.
  2. К ним относят следующие строительные технологии и материалы: изоляцию, деревянные полы, поглощающие свет поверхности, а также ориентацию здания на юг.
  3. Такие солнечные системы позволяют осуществить максимальное использование солнечной энергии, к тому же они быстро окупают расходы на их возведение за счет снижения энергозатрат.

Они являются экологически чистыми, а также позволяют создать энергетическую независимость. Именно из-за этого использование таких технологий очень перспективно.

Активные системы

К этой группе относят коллекторы, аккумуляторы, насосы, трубопроводы для теплоснабжения и горячего водоснабжения в быту. Первые устанавливают непосредственно на крышах домов, а остальные располагают в подвальных помещениях, чтоб использовать их для горячего водоснабжения и теплоснабжения.

Солнечные фотоэлементы

Чтоб более эффективно реализовывать всю солнечную энергию применяют такие источники энергии солнца, как фотоэлементы, или как их еще называют — солнечные элементы.

  1. На своей поверхности они имеют полупроводники, которые, при воздействии на них лучей солнца, начинают двигаться, и тем самым вырабатывают электроток.
  2. Такой принцип выработки тока не содержит никаких химических реакций, что позволяет фотоэлементам работать достаточно долго.
  3. Такие фотоэлектрические преобразователи как источники энергии солнца легко использовать, так как они имеют небольшой вес, просты в обслуживании, а также являются очень эффективными в использовании солнечной мощности.

На сегодняшний день солнечные батареи, как источник энергии солнца на земле, используют для выработки горячего водоснабжения, отопления и для производства электричества в теплых странах, таких как Турция, Египет и страны Азии. В нашем регионе солнце источник энергии применяют для снабжения электричеством автономных систем электропитания, маломощной электроники и приводов самолетов.

Солнечные коллекторы

Использование солнечной энергии коллекторами заключается в том, что они преобразовывают радиацию в тепло. Их разделяют на следующие основные группы:

  • Плоские солнечные коллекторы. Являются самыми распространенными. Их удобно использовать для бытовых отопительных нужд, а также при подогреве воды для горячего водоснабжения;
  • Вакуумные коллекторы. Их используют для бытовых нужд, когда необходима вода высокой температуры. Они состоят из нескольких стеклянных трубок, проходя через которые лучи солнца нагревают их, а они, в свою очередь, отдают тепло воде;
  • Воздушные солнечные коллекторы. Их используют для воздушного отопления, рекуперации воздушных масс и для осушительных установок;
  • Интегрированные коллекторы. Самые простые модели. Их используют для предварительного подогрева воды, например, для газовых котлов. В быту подогретая вода собирается в специальном баке — накопители и далее используется для различных нужд.

Использование энергии солнца коллекторами осуществляется путем накапливания ее в так называемых модулях. Они устанавливаются на крыше зданий и состоят из стеклянных трубок и пластин, которые, в целях поглощения большего объема солнечного света, окрашивают в черный цвет.

Солнечные коллекторы используют для подогрева воды для горячего водоснабжения и отопления жилых домов.

Преимущества солнечных установок

  • они полностью бесплатны и неисчерпаемы;
  • имеют полную безопасность в использовании;
  • автономны;
  • экономичны, так как расход средств осуществляется только лишь на приобретение оборудования для установок;
  • их использование гарантирует отсутствие скачков напряжения, а также стабильность в электроснабжении;
  • долговечны;
  • просты в использовании и в обслуживании.

Использование солнечной энергии при помощи таких установок с каждым годом набирает популярности. Солнечные батареи дают возможность сэкономить не малые деньги на отоплении и горячем водоснабжении, к тому же они являются экологически чистыми и не наносят урон здоровью человека.

Источник: https://mirenergii.ru/energiyasolnca/sposoby-i-osobennosti-ispolzovaniya-energii-solnca-na-zemle.html

Использование энергии солнечного света

Солнце представляет собой светящийся огромный газовый шар, в котором протекают достаточно сложные процессы и постоянно выделяется энергия. Благодаря ей существует жизнь на нашей планете: нагревается атмосфера и поверхность планеты, дуют ветра, нагреваются океаны и моря, произрастают растения и так далее.

Солнечная энергия способствует образованию ископаемым видам топлива, преобразовывается в теплоту и холод, электричество и движущую силу. Светило испаряет воду, влагу превращает в водные капли, образует туманы и облака. Одним словом, энергия Солнца создает гигантский круговорот влаги на планете, систему воздушного и водяного отопления планеты.

Когда солнечный свет попадает на растения, то вызывает у них процесс фотосинтеза, рост и развитие. Прогревая почву, он формирует ее климат, давая жизненную силу микроорганизмам, семенам растений и все существам, которые населяют почву. Без солнечной энергии живые организмы были бы в состоянии спячки (анабиоза).

Примеры использования солнечной энергии в народном хозяйстве

Солнечная энергия — это восстанавливаемый естественным путем источник энергии и, что важно, экологически безопасный. Ученые со всего мира работают над расширением возможности ее использования. Во многих странах созданы государственные программы для разработки технологий применения солнечной энергии.

Наибольшее потребление солнечной энергии наблюдается в Турции и Израиле. А рекордное число оборудованных домов системой солнечного нагрева воды находится на Кипре.

В сельскохозяйственной деятельности, а именно в агропромышленном комплексе, также применяется солнечная энергия. Планируется внедрить ее во все отрасли народного хозяйства.

Свободные площади стен и крыш домов, хозяйственных построек позволяют накапливать достаточные количества электроэнергии, причем бесплатной.

Фотоэлектрические системы можно применять для работы электропастуха на выпасах, насосов, электроножей, медогонок на пасеке, для обеспечения жилых зданий электричеством.

Воздушные коллекторы, работающие на солнечной энергии, создают среду для проживания людей и сельскохозяйственных животных, а также поддерживают показатели влажности и температуры на одном, заданном уровне.

Теплицы и парники, оборудованные гелиопанелями, накапливают и сохраняют тепло, обеспечивая микроклимат для растений.

Устройства на основе солнечной энергии применяются для проветривания и отопления овоще- и зернохранилищ, поддерживая заданные параметры человеком.

Источник: https://kratkoe.com/solnechnaya-energiya-doklad/

Как используют солнечную энергию

Без энергии невозможна жизнь на планете. Физический закон сохранения энергии говорит о том, энергия не может возникнуть из ничего и не исчезает бесследно.

Она может быть получена из природных ресурсов, таких как уголь, природный газ или уран, и превращена в удобные для нас формы, например, в тепло или свет.

В окружающем нас мире можем  находить различные формы накопления энергии, но важнейшим для человека является энергия, которую дают солнечные лучи- солнечная энергия.

Солнечная энергия относится к восстанавливаемым источникам энергии, то есть восстанавливается без участия человека, естественным путем.

Это один из экологически безопасных энергетических источников, который не загрязняет окружающую среду.

Возможности применения солнечной энергии практически неограниченны и ученые всего мира работают над разработкой систем, которые расширяют возможности использования солнечной энергии.

Один квадратный метр Солнца излучает 62 900 кВт  энергии. Это примерно соответствует мощности работы 1 миллиона электрических ламп. Впечатляет такая цифра — Солнце дает Земле ежесекундно 80 тысяч миллиардов кВт, т.

е в несколько раз больше, чем все электростанции мира. Перед современной наукой стоит задача — научиться наиболее полно и эффективно использовать энергию Солнца, как наиболее безопасную.

Ученые считают, что повсеместное использование солнечной энергии — это будущее человечества.

Мировые запасы открытых месторождений угля и газа, при таких темпах их использования, как сегодня, должны истощиться в ближайшие 100 лет. Подсчитано, что в еще не разведанных месторождениях запасов горючих ископаемых хватило бы на 2-3 столетия. Но при этом наши потомки были бы лишены этих энергоносителей, а продукты их сгорания нанесли бы колоссальный ущерб окружающей среде.

Огромный потенциал имеет атомная энергия. Однако, Чернобыльская авария в апреле 1986 года показала, какие серьезные последствия может повлечь использование ядерной энергии. Общественность всего мира признала, что использование атомной энергии в мирных целях экономически оправдано, но следует соблюдать строжайшие меры безопасности при ее использовании.

Следовательно, наиболее чистый, безопасный источник энергии — Солнце!

Солнечная энергия может быть преобразована в полезную энергию посредством использования активных и пассивных солнечных энергетических систем.

Пассивные системы использования солнечной энергии.

Самый примитивный способ пассивного использования солнечной энергии — это окрашенная в темный цвет емкость для воды. Темный цвет, аккумулируя солнечную энергию, превращает ее в тепловую — вода нагревается.

Однако, есть более прогрессивные методы пассивного использования солнечной энергии.

Разработаны строительные технологии, которые при проектировании зданий,  учета климатических условий, подбора строительных материалов  максимально используют солнечную энергию для обогрева или охлаждения, освещения зданий. При таком проектировании сама конструкция здания является коллектором, аккумулирующей солнечную энергию.

Так, в 100г н.э Плиний Младший построил небольшой дом на севере Италии. В одной  из комнат окна сделаны из слюды. Оказалось, что эта комната теплее других и на ее обогрев требовалось меньше дров. В этом случае слюда являлась как изолятор, задерживающий тепло.

Современные строительные конструкции учитывают географическое положение зданий.

Так, большое количество окон, выходящие на южную сторону, предусматривают в северных регионах,  чтобы поступало больше солнечного света и тепла, и ограничивают количество окон с  восточной и западной стороны, чтобы ограничить поступление солнечного света летом. В таких зданиях ориентация окон и расположение, тепловая нагрузка и теплоизоляция — единая конструкторская система при проектировании.

Такие здания экологически чистые, энергетически независимые и комфортные.  В помещениях много естественного света, более полно ощущается связь с природой, к тому же  существенно экономится электроэнергия. Тепло в таких зданиях сохраняется благодаря подобранным теплоизоляционным материалам стен, потолков, полов.

Такие первое «солнечные» здания приобрели огромную популярность в Америке после Второй мировой войны. Впоследствии, из-за снижения цен на нефть, интерес к проектировке таких зданий несколько угас.

Однако, сейчас, в связи с глобальным экологическим кризисом, наблюдается рост внимания к экологическим проектам с возобновляющимся энергетическим системам возросла вновь.

 Активные системы использования солнечной энергии

В основе  активных систем использования солнечной энергии применяются солнечные коллекторы.

Коллектор, поглощая солнечную энергию, преобразует ее в тепло, которое через теплоноситель обогревает здания, нагревает воду, может преобразовать его в электрическую энергию и т.д.

Солнечные коллекторы могут применятся во всех процессах в промышленности, сельском хозяйстве, бытовых нуждах, где используется тепло.

 Виды коллекторов 

воздушный солнечный коллектор

Это простейший вид солнечных коллекторов. Его конструкция предельно проста и напоминает эффект обычной теплицы, которая есть на любом дачном участке.  Проведите небольшой эксперимент.

В зимний солнечный день положите на подоконник любой предмет так, чтобы на него падали солнечные лучи и через некоторое время  положите на него ладонь. Вы почувствуете, что этот предмет стал теплым.

А за окном может быть — 20! Вот на этом принципе и основана работа солнечного воздушного коллектора.

Читайте также:  Как работают уличные фонари на солнечных батареях

Основной элемент коллектора — теплоизолированная пластина, сделанная из любого материала, который хорошо проводит тепло. Пластина окрашена в темный цвет. Солнечные лучи проходят через прозрачную поверхность, нагревают пластину, а потом потоком воздуха передают тепло в помещение. Воздух проходит благодаря естественной конвенции или при помощи вентилятора, что улучшает теплопередачу.

Однако, недостаток работы этой системы в том, что требуются дополнительные расходы на работу вентилятора. Эти коллекторы работают в течении светового дня, поэтому не могут заменить основной источник отопления.

Однако, если вмонтировать коллектор в основной источник отопления или вентиляции, его КПД несоизмеримо возрастает.

Солнечные воздушные коллекторы могут использоваться и для опреснения морской воды, что снижает ее себестоимость до 40 евроцентов за куб м.

Солнечные коллекторы могут быть плоскими и  вакуумными.

плоский солнечный коллектор

Коллектор состоит из элемента, поглощающего солнечную энергию, покрытия (стекло с пониженным содержанием металла) , трубопровода и  термоизолирующего слоя.  Прозрачное покрытие защищает корпус от неблагоприятных климатических условий.

Внутри корпуса панель поглотителя солнечной энергии (абсорбера) соединена с теплоносителем, который циркулирует по трубам. Трубопровод может быть как в виде решетки, так и в виде серпантина. Теплоноситель движется по ним от входных  до выходных патрубков, постепенно нагреваясь.

Панель поглотителя изготавливается из металла, хорошо проводящему тепло (алюминий, медь).

Коллектор улавливает тепло, превращая его в  тепловую энергию. Такие коллекторы можно вмонтировать в крышу или расположить на крыше здания, а можно расположить их отдельно. Это придаст дизайну участка современный вид.

вакуумный солнечный коллектор

Вакуумные коллекторы могут использоваться круглый год. Основным элементом коллекторов являются вакуумные трубки. Каждая из них состоит из двух стеклянных труб.

Трубы изготавливают из боросиликатного стекла, причем внутренняя покрыта специальным покрытием, которое обеспечивает поглощение тепла с минимальным отражением. Из пространства между трубками выкачан воздух,. Для поддержания вакуума используется бариевый газопоглотитель.

В исправном состоянии вакуумная трубка имеет серебристый цвет. Если она выглядит белой, то это значит, что вакуум исчез и трубку надо заменить.

Вакуумный коллектор состоит из комплекса вакуумных трубок (10-30) и осуществляет передачу тепла в накопительный резервуар через незамерзающую жидкость (теплоноситель).  КПД вакуумных коллекторов высок:

  • — при облачной погоде, т.к. вакуумные трубки могут поглощать энергию инфракрасных лучей, которые проходят через облака
  • — могут работать при минусовых температурах.

Солнечные батареи.

Солнечная батарея — это набор модулей, воспринимающих и преобразующих солнечную энергию, в том числе и тепловых. Но этот термин традиционно закрепился за фитоэлектрическими преобразователями. Поэтому, говоря «солнечная батарея» подразумеваем фитоэлектрическое устройство, преобразующее солнечную энергию в электрическую.

Солнечные батареи способны генерировать электрическую энергию постоянно или аккумулировать ее для дальнейшего использования.  Впервые фотоэлектрические батареи были применены в на космических спутниках.

Достоинство солнечных батарей — максимальная простота конструкции, простой монтаж, минимальные требования к облуживанию, большой срок эксплуатации. При установке не требуют дополнительного места.

Единственное условие — не затенять их в течении длительного времени и удалять пыль с рабочей поверхности.

Современные солнечные батареи способны сохранять работоспособность в течении десятилетий! Трудно найти систему настолько безопасную, эффективную и с таким длительным сроком действия! Они вырабатывают энергию в течении всего светового дня, даже в пасмурную погоду.

Солнечные батареи имеют свои недостатки в применении:

  1. —  чувствительность к загрязнениям. (Если расположить батарею под углом 45 градусов,  то она будет очищена дождями или снегом, тем самым не потребуется дополнительного обслуживания)
  2. — чувствительность к высокой температуре. (Да, при нагреве до 100 — 125 градусов солнечная батарея  может даже отключиться и может потребоваться система охлаждения. Вентиляционная систстема при этом затратит малую долю вырабатываемой батареей энергии. В современных конструкциях солнечных батарей предусмотрена система оттока горячего воздуха.)
  3. — высокая цена. (Принимая во внимание длительный срок службы солнечных батарей, то она не только окупит затраты на ее приобретение, но и сэкономит средства при потреблении электроэнергии, сэкономит тонны традиционных видов топлива при том экологически безопасна)

Использование солнечных энергетических систем  в строительстве.

В современной архитектуре все чаще планируют строить дома с встроенными аккумуляторными источниками солнечной энергии. Солнечные батареи устанавливают на крышах зданий или на специальных опорах.

Эти здания используют тихий, надежный и безопасный источник энергии — Солнце.

Солнечная энергия используется для освещения, отопления помещений, охлаждения воздуха, вентиляции, производства электроэнергии.

Использование систем солнечной энергии в мире.

Системы использования солнечной энергии совершенны и экологически безопасны.  Во всем мире на них огромный спрос. Во всем мире люди начинают отказываются от использования традиционных видов топлива из-за роста цен на газ и нефть. Так, в Германии в 2004г. 47% домов имели солнечные коллекторы для нагрева воды.

Во многих странах мира разработаны государственные программы развития использования солнечной энергии. В Германии это программа «100 000 солнечных крыш», в США аналогичная программа «Миллион солнечных крыш».

  • В 1996г. архитекторы Германии, Австрии, Великобритании, Греции и др. стран разработали Европейскую хартию о солнечной энергии в строительстве и архитектуре.
  • В Азии лидирует Китай, где на основе современных технологий внедряются системы солнечных коллекторов в строительство зданий и использование солнечной энергии в промышленности.
  • Факт, который говорит о многом: одним из условий вступления в Евросоюз является  рост доли альтернативных источников в энергосистеме страны.
  • В 2000г. в мире работало 60 млн кв км солнечных коллекторов, к 2010г из площадь возросла до 300 млн кв км.

Эксперты отмечают, рынок систем солнечной энергии на территории России, Украины и Белоруссии только формируется. Солнечные системы никогда не производились в больших масштабах, потому что сырьевые ресурсы были настолько дешевы, что дорогостоящее оборудование гелиосистем было не востребовано… Выпуск коллекторов, в России, например, почти полностью прекращен.

В связи с подорожанием традиционных энергоносителей, наметилось оживление интереса с применению солнечных систем. В ряде регионов этих стран, испытывающих дефицит энергоресурсов, принимаются локальные программы по использованию гелиосистем, но широкому потребительскому рынку солнечные системы практически не знакомы.

Главная причина медленного развития рынка продажи и использования солнечных систем является, во-первых, их высокая начальная стоимость, во-вторых, недостаток информации о возможностях солнечных систем, передовых технологиях их использования, о разработчиках и изготовителях гелиосистем. Все это не может дать возможности правильно оценить эффективность применения систем, работающих на солнечной энергии.

Надо иметь в виду, что солнечный коллектор — не конечная продукция. Для получения конечной продукции — тепла, электроэнергии, горячей воды — надо пройти путь от проектирования, монтажа до пуска гелиосистем.

  • Небольшой имеющийся опыт использования солнечных коллекторов показывает, что эта работа не сложнее монтажа традиционного отопления, но экономическая эффективность значительно выше.
  • В Белоруссии, России, на Украине есть множество фирм, занимающиеся проектировкой и монтажом оборудования отопления, но приоритет имеют сегодня традиционные энергоносители.
  • Развитие экономических процессов, мировой опыт использования систем солнечной энергии показывает, что будущее за альтернативными источниками энергии.

На ближайшее будущее можно отметить, что гелиосистемы являются новой, практически не занятой позицией нашего рынка.

Источник: http://RealProducts.ru/kak-ispolzuyut-solnechnuyu-energiyu/

Применение солнечной энергетики

Солнце – это природный огромный источник энергии. Внутри этого газового шара ежеминутно протекают сотни различных процессов. Без Солнца невозможна жизнь на Земле, так как оно является источником энергии для всех живых организмов. Все земные природные процессы  осуществляются благодаря солнечной энергии.

Циркуляция атмосферы, круговорот воды, фотосинтез, теплорегуляция на планете – все это было бы невозможным без Солнца.  Использование солнечной энергии на Земле такое же привычное явление, как вдох и выдох для человека. Но оно может дать человечеству еще больше.

Его успешно можно использовать для получения промышленной энергии, тепловой или электрической.

Потенциал, которым обладает солнечная энергетика

Разработки по использованию солнечной энергии начались в еще в 20 веке. С тех проведено сотни исследований учеными со всех уголков мира.

Ими было доказано, что эффективность использования солнечной энергии может быть очень и очень высокой.

Данный источник может обеспечить энергоснабжение на всей планете гораздо лучше, чем все существующие на сегодняшний день ресурсы в совокупности. При этом такой вид энергии является общедоступным и бесплатным.

Использование энергии солнечного света

Запасы природных ископаемых, способных обеспечить энергоснабжение на Земле, сокращаются с каждым днем. Поэтому в настоящее время ведутся активные разработки различных способов использования солнечной энергии. Данный ресурс является отличной альтернативой традиционным источникам. Поэтому исследования в этой сфере невероятно важны для общества.

Достижения, которые существуют на данный момент, дали возможность создать системы использования солнечной энергии, которые делаться на два типа:

  • Активные (фотоэлектрические системы, солнечные электростанции и коллекторы).
  • Пассивные (подбор стройматериалов и проектировка помещений для максимального применения энергии солнечного света).

Преобразование и использование солнечной энергии таким образом дало возможность применять неиссякаемый ресурс с высокой продуктивностью и окупаемостью.

Принцип работы пассивных систем

Существует несколько видов пассивного использования солнечной энергии. Большинство из них невероятно просты в применении, но при этом достаточно эффективны. Также существуют и более замысловатые варианты, которые помогают получать больше выгоды. Например:

  • Первое, что приходит на ум, это емкость, в которой хранится вода. Если покрасить ее в темный оттенок, то таким нехитрым образом солнечная энергия будет преобразовываться в тепловую, и вода будет нагреваться.
  • Следующий вариант не под силу выполнить обычному человеку самостоятельно, так как он требует скрупулезного анализа специалиста. Данная технология должна приниматься во внимание еще на этапе проектирования и строительства дома. Основываясь на климатических условиях, здание проектируется таким образом, что само работает как солнечный коллектор. После чего подбираются необходимые материалы, способствующие максимальной аккумуляции энергии солнечных лучей.

Благодаря таким методам становится возможным использование солнечной энергии для отопления и освещения помещений. Также подобные разработки способствуют энергосбережению. Так как подобное проектирование способно не только преобразовывать солнечную энергию, но и сохранять тепло внутри здания, что также позволяет значительно сократить расходы.

Способы активного использования солнечной энергии

Основой данного принципа энергоснабжения являются коллекторы. Такое оборудование поглощает энергию и перерабатывает ее в тепло, с помощью которого можно отапливать дом или подогревать воду, а также преобразовывает солнечную энергию в электрическую. Коллекторы широко применяются как в промышленном объеме, так и на частных участках и сельском хозяйстве.

Помимо коллекторов еще одним оснащением активной системы можно назвать панели с фотоэлементами. Данное устройство позволяет использовать солнечную энергию в быту и в промышленных масштабах. Такие панели очень просты, неприхотливы в обслуживании и долговечны.

Также способом активного применения энергии Солнца являются солнечные электростанции. Они подходят только для масштабного преобразования радиации в тепловую ил электроэнергию. За последние годы они значительно набрали популярность в мире и разработки в этой сфере позволяют расширять возможности и количество таких станций.

Использование солнечной энергии в быту

Говоря о том, что солнечная энергия помогает экономить на применении традиционных ресурсов, стоит заметить, что подобное преимущество станет действительно полезным людям, обладающим своими частными участками.

Собственный дом дает возможность установить оборудование для преобразования энергии, которое сможет удовлетворять, даже если и не полностью, хотя бы часть энергетических потребностей.

Это поможет значительно снизить потребление централизованного энергоснабжения и уменьшить расходы.

Солнечная энергия – это отличный источник для таких процессов:

  • Пассивный обогрев и охлаждение дома.

Не следует забывать о том, что Солнце и так греет все, что существует на Земле, и ваш дом не исключение. Поэтому можно усилить благотворное воздействие, внеся на этапе строительства определенные поправки, и использовав специальные техники. Таким образом, вы получите дом с гораздо более комфортной теплорегуляцией без особых вложений.

  • Нагрев воды с помощью солнечной энергии.
Читайте также:  Что такое солнечный водонагреватель?

Применение энергии солнечных лучей для подогрева воды – это самый простой и дешевый способ, доступный человеку. Подобное оснащение можно купить по адекватным ценам. При этом они смогут окупить себя достаточно быстро, ощутимо снизив расходы на централизованное энергоснабжение.

Это самый простой и дешевый способ использования солнечной энергии. Специальные устройства, которые поглощают за день солнечную радиацию, а в темное время суток освещают участки, очень популярны среди владельцев частных домов и сейчас.

Как создать источник солнечной энергии своими руками?

Солнечная панель, к сожалению, не отличается всеобщей доступностью. Ее стоимость достаточно высока, но при этом, это удобный и выгодный энергетический ресурс, который успешно можно применять в российских широтах. Но если ваше финансовое положение не позволяет осуществить такую дорогостоящую покупку, вы сможете создать подобные панели самостоятельно.

Как это сделать?

  • Первым делом вам будут нужны солнечные фотоэлементы. В среднем для одной панели их понадобится около 36 штук. Лучше выбирать элементы на монокристаллах, так как у них выше коэффициент полезного действия, и срок эксплуатации дольше.
  • Сама панель производится из фанерного листа. Из него вырезается днище, размер которого вы определяете, смотря на количество фотоэлементов. Далее панель помещается в рамку из брусков.
  • После чего требуется изготовить подложку, на которую будут накладываться фотоэлементы. Это можно сделать из ДВП.
  • Далее вам необходимо сделать отверстия. Обязательно проследите, чтобы они были симметричны.
  • Далее проводится процедура окрашивания и сушки, которая повторяется два раза.
  • После того, как подложка высохнет, на нее выкладываются элементы, и производится распайка. Важный момент – выкладывайте их вверх ногами.
  • В конечном этапе фотоэлементы выкладывают рядами, а потом уже соединяют все в комплексы. Все это по итогу крепится с помощью силикона.

Вот таким несложным способом вы можете создать своими руками оборудование, позволяющее использовать солнечную энергию в быту. Немного усилий и терпения, и у вас все получится.

Использование солнечной энергии в России

На каком этапе развития сейчас находится альтернативная энергетика в России? К сожалению, в нынешнее время это происходит на очень низком уровне. Пока страна не воплощает весь существующий потенциал в жизнь. На это имеет достаточно сильное влияние такой аспект, как наличие больших запасов полезных ископаемых, которые используются для традиционного энергоснабжения.

Тем не менее, успешное использование солнечной энергии в России возможно. Благодаря огромной площади, включающей в себя разные климатические зоны и рельеф, страна имеет возможность активно развивать выработку альтернативной энергии. При грамотном и всестороннем подходе можно обеспечивать весомый процент общего энергоснабжения именно с помощью энергии Солнца.

Источник: https://altenergiya.ru/sun/ispolzovanie-solnechnoj-energii.html

Разработки по использованию энергии солнца

Издревле человечество пользуется солнечной энергией. Благодаря ей поддерживается жизнь на нашей планете.

Воздействие солнечных лучей на поверхность нашей вращающейся планеты приводит к неравномерному нагреву водной поверхности океанов, морей, рек, озер и суши материков.

Возникающие перепады атмосферного давления, приводящие в движение воздушные массы, способствуют созданию условий жизни многообразным видам флоры и фауны. По сути, солнце своей энергией является источником жизни.

В последнее время развиваются технологии использования этой нескончаемой энергии, которая может легко заменить традиционные источники энергии (уголь, газ, нефть), требующие больших затрат для их использования в различных климатических условиях.

Применение солнечных установок имеет ряд преимуществ, которые несравнимы с другими источниками энергии. Используя некоторые из преимуществ, компания Светон http://220-on.

ru/ успешно решает задачу по обеспечению комфортного качества жизни за счёт установок автономного электроснабжения и систем бесперебойного питания для владельцев загородной недвижимости.

Основные преимущества

Неисчерпаемость запасов энергии, которая даётся практически даром. Используемые установки полностью безопасны и автономны.

Можно отметить их экономичность, поскольку покупается только оборудование установки. Кроме того, обеспечивается стабильность электроснабжения без каких-либо скачков напряжения.

Дополним ещё такими показателями, как большой срок эксплуатации и простота в использовании.

Если ещё несколько лет назад в основном солнечное тепло использовалось для естественного подогрева воды под лучами солнца, то в настоящее время можно перечислить целый ряд сфер человеческой деятельности, где непосредственно применяется солнечная энергия.

Области применения солнечной энергии

  • Во-первых, это в аграрном секторе народного хозяйства – для выработки электроэнергии, обогрева теплиц, парников, помещений и построек.
  • Во-вторых, для обеспечения электричеством учреждений медицины, здравоохранения и спорта.
  • В-третьих, в авиации и космических аппаратах.
  • В-четвёртых, в качестве световых источников в ночное время в городах.
  • В-пятых, в снабжении электричеством населённых пунктов.
  • В-шестых, в обеспечении электропитания оборудования для снабжения горячей водой жилых помещений.
  • В-седьмых, для обеспечения бытовых нужд.

Существуют пассивные и активные способы превращать солнечный свет в тепловую энергию.

Пассивные способы превращать солнечную энергию в тепловую

Этот способ основан на том, что учитываются местный ландшафт и климат при постройке зданий.

При их строительстве изучаются особенности климата, что позволяет применять такие ресурсы строительных материалов и технологий, чтобы получить максимальный эффект (особенно в жарких странах) от строящегося объекта в потреблении электроэнергии и обеспечении экологической безопасности постройки.

Поэтому в жарких странах стремятся эффективно использовать местные условия для таких строений.

Активные способы использования солнечной энергии

Специальные коллекторы и фотоэлементы, насосы, аккумуляторы, различные трубопроводы теплоснабжения являются теми инструментами, благодаря которым преобразуется энергия солнца. Рассмотрим солнечные коллекторы, преобразующие энергию солнца несколькими способами, которые определяют соответствующий тип коллектора.

  • 1. Для бытовых нужд широко используется коллектор плоский, который нагревает воду под воздействием солнечных лучей в соответствующих емкостях.
  • 2. Для высоких температур применяют вакуумные солнечные коллекторы, которые действуют посредством нагрева воды, проходящей по стеклянным трубкам, находящимся в освещаемой солнцем зоне. Такие установки применяют в бытовых условиях.
  • 3. В осушительных установках применяются коллекторы воздушного типа, нагревающие воздушные массы под солнечными лучами.
  • 4. Коллекторы интегрированного типа, в которых собираются подогретые в бытовых системах воды в общую емкость с последующим использованием для различных нужд, например, для газовых котлов.

Фотоэлемент (солнечный элемент, батарея) представляет собой полупроводник, в котором при свете возникает ток без каких-либо химических реакций, обеспечивая достаточно длительный срок работы. Такие солнечные элементы (батареи) широко используются в космической области, но могут широко применяться в других.

Солнечные батареи очень экономичны и приобретают все большую популярность в бытовых условиях. Например, на фермерских, приусадебных хозяйствах все больше проявляют к ним интерес.

Кроме того, сегодня осваиваются труднодоступные места новых регионов и сельскохозяйственных угодий, особенно в азиатской части нашей страны. Автомобильный и авиационный транспорт также имеет в своей перспективе шанс применять солнечные батареи.

Необходимо также выделить такое качество, как экологическую чистоту данных систем, которые не наносят ущерб здоровью.

Источник: http://depils.com/sposoby-i-osobennosti-ispolzovaniya-energii-solntsa-na-zemle/

Генерация электричества от солнца

Энергия солнца – это всего лишь поток фотонов. И вместе с тем это – один из основополагающих факторов, обеспечивающих само существование жизни в нашей биосфере. Поэтому вполне естественно, что солнечный свет активно используется человеком не только в климатическом аспекте, но и в качестве альтернативного источника энергии.

Где используется солнечная энергия

Сфера применения энергии солнца очень обширна, и с каждым годом она становится все больше.

Так, еще совсем недавно дачный душ с солнечным нагревателем воспринимался как нечто необыкновенное, а возможность использования солнечного света для домашних электросетей и вовсе казалась фантастикой.

Сегодня же никого не удивишь не только автономной гелиостанцией, но и мобильными зарядками на солнечных батареях и даже мелкой техникой (например, часами), работающей на фотогальваническом эффекте.

Вообще же использование солнечной энергии очень востребовано в таких областях, как:

  • Сельское хозяйство;
  • Энергоснабжение санаториев и пансионатов;
  • Космическая отрасль;
  • Природоохранная деятельность и экотуризм;
  • Электрификация отдаленных и сложнодоступных регионов;
  • Уличное, садовое и декоративное освещение;
  • Сфера ЖКХ (ГВС, придомовое освещение);
  • Мобильная техника (гаджеты и зарядные модули на солнечных батареях).

Ранее энергия солнца использовалась главным образом в космической отрасли (энергоснабжение спутников, станций и т.д.) и в промышленности, но со временем альтернативную энергетику начали активно развивать и в быту. Одними из первых объектов, оснащенных солнечными установками, стали южные пансионаты и санатории, особенно расположенные в уединенных районах.

Солнечные установки и их преимущества

Успешное применение первых гелиомодулей доказало, что энергия солнечных лучей обладает массой преимуществ перед традиционными источниками. Ранее главными достоинствами гелиоустановок называли лишь экологичность и неисчерпаемость (а также бесплатность) солнечного света.

Но на самом деле список достоинств гораздо шире:

  • Автономность, так как не требуется никаких внешних энергокоммуникаций;
  • Стабильность подачи питания, в силу специфики солнечный ток не подвержен скачкам напряжения;
  • Экономичность, так как средства тратятся только один раз, при монтаже установки;
  • Солидный ресурс эксплуатации (свыше 20 лет);
  • Всесезонное использование, солнечные установки эффективно работают даже в морозы и облачную погоду (с незначительным снижением КПД);
  • Простота и удобство сервисного обслуживания, так как требуется только изредка очищать лицевые стороны панелей от загрязнений.

Единственным недостатком можно назвать только зависимость от солнца и тот факт, что такие установки не работают ночью. Но эта проблема решается за счет подключения специальных аккумуляторов, в которых накапливается выработанная за день энергия солнечного света.

Фотоэнергия

Фотоэнергия – это один из двух способов использования излучения солнца. Это постоянный ток, вырабатываемый под действием солнечных лучей.

Происходит такое преобразование в так называемых фотоячейках, которые, по сути, представляют собой двухслойную структуру из двух полупроводников разного типа.

Нижний полупроводник относится к p-типу (с недостатком электронов), верхний – к n-типу с избытком электронов.

Электроны n-проводника поглощают энергию падающих на них лучей солнца и покидают свои орбиты, причем энергетического импульса достаточно для того, чтобы они перешли в зону p-проводника. При этом образуется направленный электронный поток, называемый фототоком. Иными словами, вся структура работает как своеобразные электроды, в которых под воздействием солнца генерируется электроэнергия.

Для производства таких фотоячеек применяют кремний. Объясняется это тем, что кремний во-первых, широко распространен, а во-вторых, его промышленная обработка не требует больших затрат.

Фотоячейки из кремния бывают:

  • Монокристаллическими. Изготавливаются из монокристаллов и отличаются равномерной структурой с чуть более высоким КПД (примерно 20%), но при этом дороже стоят.
  • Поликристаллическими. Имеют неравномерную структуру за счет использования поликристаллов и несколько более низкий КПД (15-18%), но гораздо дешевле моновариантов.
  • Тонкопленочными. Изготавливаются методом напыления аморфного кремния на тонкопленочную подложку. Отличаются гибкой структурой и самой низкой себестоимостью производства, однако имеют вдвое больше габариты по сравнению с кристаллическими аналогами той же мощности.

Сферы применения каждого типа ячеек весьма обширны и определяются их эксплуатационными особенностями.

Солнечные коллекторы

Гелиоколлекторы также используются как преобразователи солнечной энергии, но принцип их действия совершенно иной. Они преобразуют падающий свет не в электрическую, а в тепловую энергию за счет нагрева жидкого теплоносителя. Применяют их либо для ГВС, либо для отопления домов.

Главный элемент любого коллектора – абсорбер, он же – теплопоглотитель. Абсорбер представляет собой либо плоскую пластину, либо трубчатую вакуумированную систему, внутри которой циркулирует теплоноситель (это или простая вода, или антифриз).

Причем абсорбер обязательно красится в черный цвет специальной краской для увеличения коэффициентов поглощения.

Именно по типу абсорберов коллекторы делят на плоские и вакуумные. У плоских теплопоглотитель выполняют в виде металлической пластины, к которой снизу припаян металлический же змеевик с теплоносителем.

У вакуумных абсорбер изготавливается их нескольких соединенных между собой на концах стеклянных трубок. Трубки делают двойными, между стенками создают вакуум, а внутри помещают стержень с теплоносителем.

Все стержни сообщаются между собой посредством специальных соединителей в местах стыков труб.

Абсорберы обоих типов помещают в прочный легкий корпус (обычно – из алюминия или ударопрочных пластиков) и надежно теплоизолируют от стенок. Лицевая же сторона корпуса закрывается прозрачным ударостойким стеклом с максимальной проницаемостью для фотонов. Это обеспечивает лучшее поглощение солнечной энергии.

Читайте также:  Лучшие российские солнечные панели

Особенности функционирования

Принцип работы обоих типов коллекторов аналогичен. Нагреваясь в коллекторе до высоких температур, теплоноситель проходит по соединительным шлангам в теплообменный бак, который наполнен водой.

Через бак он проходит по змеевидной трубке, отдавая свое тепло воде. Остывший теплоноситель выходит из бака и подается обратно в коллектор.

По сути, это – своеобразный «солнечный» кипятильник», только вместо нагревательной спирали используется змеевик в баке, а вместо электросети – солнечный свет.

Конструктивные различия определяют и разницу в применении вакуумных и плоских коллекторов. Использование солнечного излучения при помощи вакуумных моделей возможно круглый год, в том числе и зимой, и в межсезонье. Плоские же варианты лучше работают в летний период. Однако они дешевле и проще вакуумных, поэтому оптимально подходят именно для сезонных целей.

Солнечная энергия в городах (экодома)

Гелиоэнергетика активно применяется не только для частных домов, но и для городских строений. Как человек использует солнечную энергию в мегаполисах, догадаться не сложно. Она также применяется для обогрева и ГВС зданий, причем нередко – целых кварталов.

В последние годы активно развиваются и воплощаются концепции экодомов, полностью работающих на альтернативных источниках энергии.

В них используются комбинированные системы, обеспечивающие эффективное получение солнечной, ветровой и тепловой энергии земли.

Нередко такие дома не только целиком покрывают свои энергетические нужды, но и передают излишки в городские сети. Причем совсем недавно проекты таких экозданий появились и в России.

Гелиостанции и их виды

В южных регионах с высокой инсоляцией строят не просто отдельные гелиоустановки, но целые станции, вырабатывающие энергию в промышленных масштабах.

Количество солнечной энергии, производимое ими, весьма велико и многие страны с подходящим климатом уже начали постепенный перевод всей энергосистемы на такой альтернативный вариант. По принципу работу станции делят на фототермические и фотоэлектрические.

Первые работают по методу коллекторов и подают в дома разогретую воду для ГВС, вторые же вырабатывают непосредственно электричество.

Существует несколько видов гелиостанций:

  • Башенные. Позволяют получать сверхнагретый водяной пар, подаваемый на генераторы. В центре станции базируется башня с водным резервуаром, вокруг нее размещают гелиостаты (зеркальные), которые фокусируют лучи на резервуаре. Это достаточно эффективные станции, главный их недостаток – сложность точного позиционирования зеркал.
  • Тарельчатые. Состоят из приемника гелиоэнергии и отражателя. Отражатель – тарелкообразное зеркало, концентрирующее излучение на приемнике. Такие концентраторы солнечной энергии располагаются на небольшом удалении от приемника, а их количество определяется требуемой мощностью установки.
  • Параболические. Трубки с теплоносителем (обычно – маслом) помещают в фокусе длинного параболического зеркала. Разогретое масло отдает тепло воде, та вскипает и вращает генераторы.
  • Аэростатные. По сути, это самые эффективные и мобильные гелиостанции на Земле. Их главный элемент – аэростат с фотоэлектрическим слоем, наполненный водяным паром. Он поднимается высоко в атмосферу (обычно выше облаков). Разогретый пар из шара по гибкому паропроводу подается на турбину, на выходе из нее конденсируется и вода насосом поднимается обратно в шар. Попав в шар, вода испаряется и цикл продолжается.
  • На фотобатареях. Это уже привычные всем установки на солнечных батареях, которые используются для частных домов. Они обеспечивают получение электроэнергии и подогрев воды в нужных объемах.

Сегодня разного рода гелиостанции (в том числе и комбинированные, объединяющие несколько типов) играют все большую роль в энерговыработке многих стран. А некоторые государства перестраивают свою энергетику таким образом, чтобы через несколько лет вообще практически полностью перейти на альтернативные системы.

Источник: http://solarb.ru/ispolzovanie-solnechnoi-energii-na-zemle

Бесплатная энергия солнца

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Солнечная энергия как альтернативный источник энергии

Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:

Преобразование в электрическую энергию

Путем применения фотоэлектрических элементов

Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.

Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.

Путем применения термоэлектрических генераторов.

  • Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).

Преобразование в тепловую энергию

Путем использования коллекторов различных типов и конструкций.

  • Вакуумные коллекторы — трубчатого вида и в виде плоских коллекторов.

Принцип действия — под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.

  • Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.

Принцип действия — потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок.

Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи.

Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Солнечные электростанции работают в

  • Оренбургской области: «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;«Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан: «Бурибаевская», установленной мощностью 20,0 МВт;«Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай: «Кош-Агачская», установленной мощностью 10,0 МВт;«Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:
    «Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:
    «АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым, независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха—Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанции

  • В Алтайском крае, 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области, 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области, 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае, 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области, 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области, 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области, 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области, 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан, 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия, 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан, 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области, 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области, 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае, 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области, 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.

Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт.

Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя — в России альтернативным источникам энергии быть и развиваться.

Пригодна ли для обычного дома

  • Для бытового использования гелиоэнергетика — перспективный вид энергетики.
  • В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
  • Использование теплового насоса — обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
  • Гелиоколлекторы — можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.

Плюсы и минусы

К достоинствам солнечной энергетики относятся:

  • Экологическая безопасность установок;
  • Неисчерпаемость источника энергии в далекой перспективе;
  • Низкая себестоимость получаемой энергии;
  • Доступность производства энергии;
  • Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.

Недостатками являются:

  • Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
  • Сезонность работы, которую определяет географическое расположение;
  • Низкий КПД;
  • Высокая стоимость оборудования.

Перспективы

Перспективы развития данной отрасли энергетики обусловлены положительными и отрицательными свойствами присущим гелиоустановкам. Если с достоинствами все понятно, то с недостатками предстоит работать инженерам и разработчикам оборудования и материалов.
Факторами, вызывающими здоровый оптимизм, по развитию альтернативных источников энергии, являются:

  1. Запасы традиционных источников энергии постоянно сокращаются, что обуславливает рост их стоимости.
  2. Технический прогресс постоянно идет, появляются новые материалы и технологии, и что, в свою очередь, приводит к уменьшению стоимости оборудования и повышению КПД установок.
  3. Политика государства в энергетической области направлена на развитие альтернативной энергетики, о чем были приняты постановления правительства и соответствующие программы, как то:
  • В 2009 году — «Основные направления государственной политики в сфере повышения энергетической эффективностиэлектроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года».
  • Помощь государства при реализации программы Международной финансовой корпорации (IFC) по развитию возобновляемых источников энергии.
  • Создание, на законодательном уровне, экономических рычагов, способствующих развитию «зеленой» энергетики, выражающихся в установлении льготных тарифов, финансовой помощи при строительстве, налоговые льготы и компенсация части кредитных затрат на строительство.

Россия – большая страна, поэтому для успешного развития всех отраслей промышленности и комфортного проживания людей во всех регионах, необходимо наличие запасов различных видов энергии. В связи с этим альтернативные источники все более прочно входят в общую систему энергоснабжения страны, обеспечивая самые отдаленные города и поселки источниками электричества и тепла.

Источник: https://alter220.ru/solnce/solnechnaya-energiya.html

Ссылка на основную публикацию
Adblock
detector