Контроллер заряда аккумулятора для солнечной батареи

Схема и принцип работы контроллера заряда солнечной батареи

Солнечная энергетика пока что ограничивается (на бытовом уровне) созданием фотоэлектрических панелей относительно невысокой мощности. Но независимо от конструкции фотоэлектрического преобразователя света солнца в ток это устройство оснащается модулем, который называют контроллером заряда солнечной батареи.

Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея — накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.

Контроллеры для солнечных батарей

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда аккумулятора, сохраняющего энергию солнечной батареи.

Такой выглядит одна из многочисленных существующих моделей контроллеров заряда для солнечной батареи. Этот модуль относится к числу разработок типа PWM

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений).

Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.

В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Применяемые на практике виды

На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и  ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции.

Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

Одна из популярных у пользователей  моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность. Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Структурные схемы контроллеров

Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

Вариант #1: устройства PWM

Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и  разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).

Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий.

Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность (+)

Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами.

Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ).

Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM. Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов.

Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

Вариант #2: приборы MPPT

Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы. Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

Схемное решение в структурном виде для контроллеров заряда, основанных на технологиях MPPT.

Здесь уже отмечается более сложный алгоритм контроля и управления периферийными устройствами

Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий. Схемой таких устройств реализуются несколько методов контроля:

  • возмущения и наблюдения;
  • возрастающей проводимости;
  • токовой развёртки;
  • постоянного напряжения.

А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей. Так, например, если используется контроллер, рассчитанный на максимум  входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени.

Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки.

Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.

Техника соединения контроллеров PWM с периферийными устройствами особыми сложностями не выделяется. Каждая плата оснащена маркированными клеммами. Здесь попросту требуется соблюдать последовательность действий

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.

Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм2. То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм2.

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями. Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.

Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено». Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.

Выводы и полезное видео по теме

Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.

Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему инвертора напряжения. Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.

Источник: http://sovet-ingenera.com/eco-energy/sun/kontroller-zaryada-solnechnoj-batarei.html

Как выбрать контроллер заряда солнечной батареи

Схема контроллера заряда аккумулятора от солнечной батареи строится на базе чипа, который является ключевым элементом всего устройства  в целом. Чип – основная часть контроллера, а сам контроллер – это ключевой элемент гелиосистемы. Данное устройство отслеживает работу всего устройства в целом, а также руководит зарядкой аккумулятора от солнечных батарей.

Как работает контроллер заряда аккумулятора от солнечной батареи

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства.  Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Схема работы контроллера

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Читайте также:  Внешние аккумуляторы для смартфонов и планшетов

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору.

Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Типы

On/Off

Данный тип устройств считается наиболее простым и дешевым. Его единственная и главная задача – это отключение подачи заряда на аккумулятор при достижении максимального напряжения для предотвращения перегрева.

Однако данный тип имеет определенный недостаток, который заключается в слишком раннем отключении. После достижения максимального тока необходимо еще пару часов поддерживать процесс заряда, а этот контроллер сразу его отключит.

В результате зарядка аккумулятора будет в районе 70% от максимальной. Это негативно отражается на аккумуляторе.

PWM

Данный тип является усовершенствованным On/Off. Модернизация заключается в том, что в него встроена система широтно-импульсной модуляции (ШИМ). Эта функция позволила контроллеру при достижении максимального напряжения не отключать подачу тока, а уменьшать его силу.

Из-за этого появилась возможность практически стопроцентной зарядки устройства.

МРРТ

Данный типаж считается наиболее продвинутым в настоящее время. Суть его работы строится на том, что он способен определить точное значение максимального напряжения для данного аккумулятора.

Он непрерывно следит за током и напряжением в системе.

Из-за постоянного получения этих параметров процессор способен поддерживать наиболее оптимальные значения тока и напряжения, что позволяет создать максимальную мощность.

Если сравнивать контроллер МРРТ и PWN, то эффективность первого выше примерно на 20-35%.

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Как сделать своими руками

Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.

Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.

Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.

Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.

Источник:

Тонкости подбора и монтажа контроллера для заряда солнечной батареи

Особую популярность в последнее время приобрели системы, функционирующие автономно, без подключения к электросети. Подобные устройства идеально подходят для работы в замкнутом режиме. Конструкции подобных систем довольно сложные и состоят из нескольких элементов, самым главным из которых является контроллер.

Контроллеры заряда имеют несколько немаловажных особенностей. Наиболее важными являются функции защиты, которые служат для повышения степени надежности работы данного устройства.

Необходимо отметить наиболее распространенные в подобных конструкциях разновидности защит:

  • устройства оснащены надежной защитой от неправильного подсоединения полярности;
  • очень важно предотвратить вероятность коротких замыканий в нагрузке и на входе, поэтому производители обеспечивают контроллеры надежной защитой от возникновения подобных ситуаций;
  • немаловажной является защита устройства от молнии, а также различных перегревов;
  • конструкции контроллеров оснащаются специальной защитой от перенапряжений и разрядки аккумулятора в ночное время суток.

Дополнительно устройство оснащается разнообразными электронными предохранителями и специальными информационными дисплеями. Монитор позволяет узнать необходимую информацию о состоянии аккумулятора и всей системы.

Помимо этого, на экране отображается множество другой немаловажной информации: напряжение аккумуляторной батареи, степень заряда и многое другое.

В конструкцию многих моделей контроллеров входят специальные таймеры, благодаря которым активируется ночной режим работы прибора.

Кроме того, существуют более сложные модели подобных устройств, способные одновременно управлять работой двух независимых друг от друга батарей. В наименовании подобных приборов присутствует приставка Duo.

Основным предназначением и преимуществом данного вида приборов является своевременное отключение подачи заряда на аккумулятор. Это свойство аппарата немаловажно: во время достижения оптимального напряжения оно помогает избежать перегревания прибора.

При этом обязательно следует упомянуть о недостатке подобного вида устройств – быстрое отключение. После того как будет достигнут максимальный ток, нужно в течение примерно двух часов поддержать процесс заряда, однако данный прибор отключает его сразу.

Степень заряда аккумулятора в этом случае будет порядка 70 процентов, что значительно ниже необходимого значения. Этот показатель оказывает негативное влияние на работу аккумуляторной батареи.

Второй тип контроллеров для заряда солнечной батареи – электронный прибор PWM. Выпуск подобной конструкции был налажен сравнительно давно. В основу работы устройства заложены специальные алгоритмы широтно-импульсной модуляции. Несмотря на это, подобные приборы достаточно эффективны. PWM-устройства являются оптимальным вариантом для использования в бытовых условиях.

Более современное электронное устройство – МРРТ. Прибор оснащен новейшими технологиями, направленными на отслеживание максимальной степени мощности. Это в несколько раз увеличивает эффективности и функциональность данного устройства.

Однако, несмотря на это, необходимо отметить, что при выборе устройства для использования в бытовых условиях следует выбирать прибор из серии PWM. Это обусловлено высокой стоимостью приборов из серии МРРТ, а также сложной настройкой.

Выбирая подходящий контроллер для заряда солнечной батареи, необходимо обратить особое внимание на несколько очень важных критериев.

На первом месте стоит входящее напряжение. Максимальное значение данного показателя должно соответствовать определенным нормам. В конструкциях подобных устройств иногда используются несколько батарей.

Поэтому напряжение на схему прибора идет одновременно от всех батарей, соединенных различными способами.

Чтобы прибор правильно функционировал, необходимо определенное напряжение, показатели которого не должны превышать предусмотренные производителем нормы.

Чтобы показатели напряжения соответствовали необходимым стандартам, следует учитывать некоторые нюансы:

  • завышение всех показателей конструкции для заряда солнечной батареи – в целях рекламы;
  • неустойчивость различных процессов, происходящих в фотоэлементах прибора, во время сильных световых вспышек, при этом могут быть значительно превышены показатели энергии, которая оказывает влияние на напряжение в аппарате во время холостой работы батареи.

Вторым немаловажным критерием является номинальный ток. Значение данного показателя у каждого вида устройств разное.

Поэтому при выборе того или иного прибора следует предварительно уточнять необходимые нормы мощности – для эффективной работы контроллера данные показатели очень важны. Устройство передает эти значения аккумулятору.

В том случае, если прибор не будет получать необходимую мощность, может возникнуть непредвиденная ситуация, и произойдет поломка устройства.

Еще одним важным критерием при выборе контроллера является вид нагрузки. Не следует использовать устройство для подключения различных бытовых приборов.

Это приведет к выводу контроллера из строя, что обусловлено использованием в конструкции прибора различных технологий, которые учитывают всю нагрузку, заложенную в свойствах аккумулятора.

Чтобы избежать возникновения подобных ситуаций, необходимо использовать устройство строго по назначению.

Вы можете сделать самодельный вариант своими руками и настроить его, если будете учитывать все наши рекомендации.

Прежде чем приступить к подключению прибора, следует определиться с наиболее подходящим местом для его установки. Оптимальным решением данного вопроса является сухое, хорошо проветриваемое помещение.

Категорически не рекомендуется располагать рядом с аппаратом легковоспламеняющиеся материалы. Помимо этого, категорически недопустимо расположение устройства очень близко к различным источникам вибрации, влажности, а также разнообразным обогревателям и печам.

Место для размещения аппарата должно быть надежно защищено от различных атмосферных осадков и прямых солнечных лучей.

Чтобы добиться максимального эффекта от использования подобного устройства, необходимо точно следовать инструкции, а также соблюдать определенную последовательность при подключении аппарата. Процесс подсоединения приборов PWM и различных периферийных устройств не вызовет больших затруднений – справиться с данной задачей сможет любой человек.

Источник: https://akkummaster.com/prochee/alternativnaya-energiya/kak-vybrat-kontroller-zaryada-solnechnoj-batarei.html

Контроллер заряда аккумулятора для солнечной батареи

Благодаря тому, что человек научился преобразовывать солнечное излучение в электроэнергию, мы имеем возможность обеспечивать наши дома электричеством с помощью солнца без вреда для окружающей среды.

Частный дом с множеством различных приборов и систем, которые потребляют электричество, требует сооружения целой солнечной электростанции. Она комплектуется с помощью таких приборов, как контроллер, инвертор, аккумуляторы и, конечно же, солнечные панели.

Знакомимся с подробной информацией о том, для чего в этой системе нужен контроллер, с принципом его действия, а также с видами этого прибора, и узнаем, как выбрать контроллер заряда аккумуляторов для солнечной батареи.

Предназначение и принцип работы

Контроллер − это электронный прибор, который, как следует из названия, контролирует уровни заряда и разряда аккумуляторов для солнечных батарей. Для лучшего представления о сущности этого устройства рассмотрим особенности работы тепловых панелей.

Солнечный свет попадает на поверхность батареи, где начинается процесс его преобразования в электрический ток при помощи фотоэлементов.

От солнечных батарей ток постоянного значения поступает в аккумулятор. Инвертор меняет постоянный ток на переменный перед распределением последнего между потребителями электричества.

Контроллер заряда солнечной батареи предотвращает полный разряд и перезаряд аккумуляторов.

Следить за уровнем заряда очень важно по нескольким причинам.

Во-первых, должны соблюдаться максимальные и минимальные значения заряда, которые бывают разными и зависят от типа аккумулятора. Это существенно продлит срок эксплуатации аккумуляторной батареи (АКБ), а в отдельных случаях позволит избежать ее поломки. Перезарядка некоторых видов АКБможет привести к выделению вредных веществ или даже ко взрыву устройства.

Во-вторых, многочисленные модели аккумуляторов работают с разными показателями напряжения. Контроллер солнечных батарей устанавливает необходимый уровень, с которым может работать конкретный прибор.

Помимо этого, аккумулятор отключает подачу тока от солнечной батареи к предельно заряженному накопителю, а максимально разряженное устройство отключает от потребителей электричества.

В общем, это устройство выполняет широкий спектр функций:

  1. Обеспечение многоступенчатого заряда аккумулятора.
  2. Отключение и подключение приборов в автоматическом режиме от источников энергии или от потребителей в зависимости от уровня заряда.

Таким образом, контроллер заряда отслеживает условия работы аккумуляторов, страхуя их от простоя, перезарядки и излишней нагрузки. Эти функции продлевают время эксплуатации приборов.

Виды приборов

Контроллеры для солнечных батарей представлены в нескольких видах:

  • Устройства On/Off.
  • PWM контроллеры.
  • MPPT контроллеры.
  • Устройства гибридного типа.
  • Самодельные контроллеры.

Познакомимся с каждым из этих видов. На сегодняшний день самыми популярными считаются PWM контроллер и контроллер MPPT.

Устройства On/Off

Такие контроллеры заряда аккумуляторов являются самыми простыми из всех моделей, которые представлены на современном рынке. Их функциональность весьма ограничена. Устройства этого типа отключают процесс зарядки аккумулятора при достижении максимального значения напряжения. Таким образом, предотвращается перегрев и перезарядка АКБ.

Читайте также:  Какова гарантия на автомобильные аккумуляторы?

Важно подчеркнуть, что контроллер такого типа не сможет обеспечить 100% уровень заряда АКБ. Этот нюанс объясняется тем, что отключение происходит по достижении максимального значения тока.

На момент обесточивания уровень заряда может находиться в пределах от 70 до 90%. Чтобы загрузить аккумуляторную батарею полностью, потребуется еще несколько часов.

Неполная зарядка неблагоприятно сказывается на функционировании прибора и уменьшает срок его эксплуатации.

Контроллеры типа PWM

Контроллер уровня заряда PWM (Pulse-Width Modulation) по-другому называется ШИМ. ШИМ контроллер − устройство, принцип действия которого основан на широтно-импульсной модуляции тока.

Прибор разработан с целью устранения проблемы неполной зарядки.

100% уровень достигается благодаря тому, что механизм при обнаружении максимального значения тока, понижает его продлевая таким образом зарядку аккумулятора.

Описанное устройство предотвращает перегрев аккумуляторной батареи, способствует повышению принятия заряда. В общем, хорошо сказывается на ее состоянии. Прибор этого типа считается весьма эффективным, но MPPT контроллер, если сравнивать его принцип действия с PWM, является более предпочтительным вариантом по ряду функциональных возможностей.

MPPT контроллеры

МРРТ контроллер (Maximum Power Point Tracking) − устройство, которое отслеживает максимальный предел мощности заряда. С помощью сложного алгоритма устройство этого типа следит за показаниями тока и напряжения системы энергоснабжения, определяя оптимальное соотношение параметров для обеспечения максимальной продуктивности всей солнечной электростанции.

Без преувеличения можно утверждать, что именно MPPT контроллер является наиболее усовершенствованной  и эффективной моделью по сравнению с другими. Для сравнения: MPPT контроллер повышает продуктивность системы энергообеспечения до 35% относительно PWM.

На сегодняшний день MPPT контроллер считается более подходящим для систем, в которых солнечные панели занимают значительные площади. Но высокая стоимость приборов данного типа вводит определенные ограничения при его использовании. Поэтому PWM модель является доступной для эксплуатации в системах энергоснабжения частных домов.

Устройства гибридного типа

Используются в случае энергоснабжения с помощью комбинирования источников энергии, например, ветра и солнца. В основу разработки гибридного прибора положен принцип работы МРРТ и PWM контроллеров. Единственное, чем он отличается от других моделей, − это вольтамперные параметры.

Главная цель моделей гибридного типа состоит в своеобразном выравнивании нагрузки на аккумуляторы. Эта проблема возникает в результате работы ветрогенераторов, которые производят ток непостоянной величины. При этом аккумуляторы работают в усиленном режиме, который значительно уменьшает срок эксплуатации.

Самодельные приборы

В некоторых случаях, при наличии соответствующего опыта и навыков, собирают контроллер аккумуляторов для солнечной панели самостоятельно. Но, скорее всего, такой прибор будет значительно уступать в плане функциональности и эффективности. Устройства подобного типа подходят только для очень маленькой системы энергообеспечения, которая работает с низкой мощностью.

Для изготовления контроллера заряда аккумуляторов вам понадобится его схема. Погрешность работы самодельного контроллера должна позволять фиксировать перепады измеряемых величин с точностью до одной десятой.

Способы подключения устройств

Контроллер для солнечных батарей может быть как встроенным в инвертор или блок питания, так и существовать самостоятельным прибором.

При выборе метода подключения всех компонентов системы следует учитывать соотношение значений. Например, напряжение от солнечных батарей не должно превышать максимальный показатель, с которым может работать контроллер.

Перед подключением прибора в схему для него следует выбрать сухое место, придерживаясь при этом правил противопожарной безопасности.

Ниже приводится описание способов подключения самых распространенных типов контроллеров: PWM и MPPT.

PWM

При подключении PWM контроллеров требуется соблюдать четко определенную последовательность:

  1. Провода аккумуляторной батареи соединить на клеммах контроллера заряда солнечных батарей.
  2. Включить защитный предохранитель возле провода с положительной полярностью.
  3. Подсоединить выходы солнечных батарей к контактам контроллера.
  4. Подключение лампы необходимого напряжения 12 вольт (стандартное обычное значение) к выводам нагрузки контроллера.

При этих действиях важно подключать приборы со строжайшим соблюдением маркировок клемм и полярности. Нарушение последовательности подключения приборов может привести к их поломке. Инвертор нельзя подключать к клеммам контроллера. Он должен присоединяться к клеммам аккумуляторной батареи.

MPPT

МРРТ контроллер, являясь устройством более мощным, технологически подключается немного по-другому. Хотя общие требования, касающиеся физической установки, соблюдаются в соответствии с вышеописанной схемой.

Кабели, с помощью которых МРРТ контроллер соединяется с другими приборами, оснащены медными обжимными наконечниками.

Клеммы отрицательной полярности, соединяемые с контроллером, следует оборудовать переходниками с выключателями и предохранителями.

Это позволит вам предотвратить потерю энергии, а также обеспечит безопасное использование системы. Важно проверить соответствие значения напряжения на солнечных батареях и эти же показатели у устройства.

Перед подключением приборов в систему необходимо перевести выключатели клемм в отключенное состояние и вынуть предохранители. Процесс происходит в несколько этапов:

  1. Соединить клеммы контроллера и аккумуляторной батареи.
  2. Соединить солнечные батареи с контроллером.
  3. Подключить заземление.
  4. Установить на контроллере датчик температуры.

Все это должно делаться в соответствии с маркировками клемм и соблюдением полярностей. После того как установка завершена, переводим выключатель в состояние «включено» и вставляем предохранители. Если установка выполнена правильно, на экране должны высветиться показатели заряда аккумулятора.

Критерии выбора контроллера

Контроллер процесса зарядки аккумуляторов для солнечных панелей является очень важным элементом системы энергоснабжения. Разнообразный ассортимент моделей может немного озадачить при выборе устройства.

Подобрать подходящую модель проще, если при покупке взять во внимание следующие критерии:

  1. Показатель входного напряжения. Данное значение выбранного прибора должно быть выше примерно на 20% показателей напряжения батарей, которые генерируют преобразователи солнечного света в ток.
  2. Значение общей мощности батарей. Оно не должно быть выше показателя тока на выходе.

Современные модели имеют ряд дополнительных функций, предназначенных для повышения безопасности при использовании регуляторов процесса зарядки.

Устройства управления процессами зарядки-разрядки могут иметь защиту от воздействия погодных условий, излишней нагрузки, коротких замыканий, перегрева, а также от неправильного подключения (это касается несоблюдения полярности).

Поэтому выбирать прибор следует не только в зависимости от описанных критериев, но и с учетом функций защиты, которые лучшим образом обеспечат безопасную эксплуатацию устройства.

Источник: https://batteryk.com/kontroller-zaryada

Как подобрать контроллер заряда для солнечных батарей

Статья посвящена выбору характеристик контроллера заряда аккумуляторов для солнечной электростанции

Как подобрать контроллер заряда

Вопрос – как выбрать контроллер заряда для солнечной электростанции является одним из главных при расчете солнечной системы. При всей кажущейся сложности этого вопроса, его можно существенно упростить. Это мы и попытаемся сделать в этой статье.

Итак:

Выбор контроллера заряда является четвертым этапом при расчете солнечной системы. После выбора требуемого инвертора (ссылка), расчета требуемой емкости аккумуляторов и определения требуемой суммарной мощности солнечных панелей можно приступить к выбору контроллера заряда.

О том какие контроллеры бывают и какой тип контроллера выбрать вы можете прочитать тут – http://oporasolar.ru/a171898-chto-takoe-kontroller.html

Поэтому останавливаться на этом мы не будем, а приведем способы расчета для двух типов контроллеров PWM (ШИМ) и MPPT.

Подбор PWM (ШИМ) контроллера заряда АКБ

При подборе контроллера данного типа мы будем прежде всего опираться на 2 основных характеристики это допустимая сила тока (5А, 10А,  20А, 50А) и рабочее напряжение (12В, 24В, 48В).

Немного подробнее об этих характеристиках:

Допустимая сила тока определяет максимальный ток от солнечных панелей который будет выдерживать контроллер.

Рабочее напряжение – это режимы в которых контроллер может функционировать. В зависимости от схемы соединения солнечных панелей и аккумуляторов – мы можем выбрать режим работы – рабочее напряжение.

О том какие варианты соединения Аккумуляторов и Солнечных панелей  могут быть, а также как будут определяться рабочие токи и напряжения – вы можете прочитать тут – http://oporasolar.ru/a171380-varianty-podklyucheniya-akkmulyatorov.html

И тут – http://oporasolar.ru/a171460-kak-podklyuchit-solnechnye.html

Номинальная сила тока одной панели определяется как Номинальная Мощность делить на Номинальное Напряжение

Например:

 для 100 ватной панели на 12 вольт мы получим 100/12=8.33А  ― для одной такой панели контроллера заряда на 10А и 12В будет достаточно, но при этом надо убедиться, что банк аккумуляторов (если их несколько) собран на 12В.

Включая 2 таких панели последовательно мы получаем номинальное напряжение равное 12В*2=24В и в данном случае потребуется уже контроллер заряда который может работать в режиме 24В, при этом допустимая номинальная сила тока по прежнему остается 10А, поскольку при последовательном включении солнечных панелей,  номинальный ток будет равен току одной панели – 8.33А.

Если мы включим 2 солнечных панели параллельно, то напряжение останется равным 12 В но при этом ток будет суммироваться. В нашем случае 8.33А*2=16.66А а значит контроллера заряда 20А будет достаточно.

При выборе режима включения PWM контроллера очень важно, чтобы вся система была собрана на одно номинальное напряжение – т.е. если мы включаем аккумуляторы на 24В, то и панели и контроллер и инвертор должны быть включены на 24В.

Для того чтобы определить какое максимальное количество панелей можно включить в PWM контроллер при различных режимах включения нужно умножить ток на напряжение режима включения.

Для примера определим какие панели можно включить в контроллер 30А 12/24/48В:

Итак – при включении контроллера в режиме 12 В мы имеем максимальную мощность панелей равную 12В*30А=360Вт – это может быть одна панель на 360Вт с номинальным напряжением 12В, 2 панели по 180Вт с номинальным напряжением 12В включенные параллельно, 4 панели по 90Вт с номинальным напряжением 12В включенные параллельно и так далее

При включении контроллера в режиме 24В  ― имеем 24В*30А=720Вт – можно включить 6 панелей по 120Вт с номинальным напряжением 12В при этом соединив по 2 панели последовательно и затем 3 таких цепи параллельно, или другие различные варианты как в предыдущем режиме

Мы также можем включить этот контроллер в режиме 48В и тогда получим максимальную мощность панелей 48В*30А=1440Вт.

Другим важным ограничением при выборе PWM контроллера заряда считается Емкость банка аккумуляторов. Считается, что ток заряда аккумуляторов должен быть не менее 10% от значения емкости банка аккумуляторов, т.е. для аккумулятора на 100Ач нужен ток контроллера не менее 10А.

При последовательном включении аккумуляторов номинальное напряжение остается неизменным, а вот емкость суммируется соответственно для двух 100Ач АКБ включенных последовательно, ток нужен уже 20А.

Поэтому старайтесь выбирать режим работы контроллера так, чтобы ток заряда банка аккумуляторов не был больше номинального тока контроллера.

Подбор MPPT контроллера заряда АКБ

В случае выбора такого контроллера ситуация обстоит немного проще. Такие контроллеры преобразовывают любое напряжение панелей на входе в контроллер в требуемое номинальное для зарядки аккумуляторов. 

У таких контроллеров важна еще одна характеристика – максимальное напряжение холостого хода солнечных панелей и в данном случае она определяет количество панелей и схему включения.

Напряжение холостого хода любой панели указано в инструкции  к солнечной панели или на самой панели с обратной стороны называется  Uoc (U open circuit). Например для панели 150Вт (Моно) 12В  напряжение холостого хода составляет порядка 23В. 

Что касается подбора контроллера по току – ситуация аналогичная PWM контроллерам.

Например в контроллер MPPT на 60А и 150В Напряжение холостого хода можно включить последовательно 6 моно панелей по 150 Вт с напряжением холостого хода 23В (23В* 6=138В меньше 150В).

При этом включить параллельно эти же 6 панелей мы не сможем, поскольку для каждой панели номинальный ток будет равен 150Вт/12В=12,5А. А это значит что включив параллельно 4 таких панели мы получим ток уже 50А.

Поэтому в данном случае очень важно определить схему включения панелей так, чтобы получить максимальную суммарную мощность.

При использовании данных панелей мы можем подключить до 24 таких панелей – по 6 панелей последовательно и далее 4 цепочки параллельно.

Читайте также:  Как толкнуть аккумулятор планшета в домашних условиях

На этом все сложности выбора контроллеров заряда заканчиваются.

Есть более научные способы расчета требуемых характеристик контроллеров, но в целом результаты таких расчетов не будут существенно отличаться от предложенного нами способа. Если Вам интересны такие способы расчета ― следите за появлением новых статей ― мы будем стараться подробно разбирать все нюансы.

Если у вас возникли сложности при расчетах – звоните +7-903-008-34-37 и мы с радостью поможем вам разобраться. Кроме того мы сделаем для вас расчет системы любой сложности абсолютно бесплатно!

Источник: https://oporasolar.ru/a172232-kak-podobrat-kontroller.html

Контроллер заряда солнечных батарей

В настоящее время все большую популярность набирают системы, в которых не требуется подключение к сети электропитания. В состав системы входят: генератор энергии, контроллер (ШИМ, МРРТ, к примеру, фирма Arduino), реле, инвертор (совершает поворот тока) и провода. Ниже представлены различные варианты получения энергии с использованием природных источников и преобразованием их энергии.

Контроллер заряда солнечных батарей с цифровым дисплеем Morningstar

Системы автономного обеспечения энергией

Ветрогенераторы

Востребованы в местности с сильными ветрами, иначе их рентабельность заметно падает. Данные системы просты в эксплуатации и обслуживании.

Преимущества очевидны:

  • Система полностью автономна, топливо не требуется.
  • Простая конструкция, не требующая дорогостоящего обслуживания. Ремонт сводится к профилактическому осмотру.
  • Для бесперебойной работы не требуется остановка системы. При отсутствии ветра энергия потребителям идет с аккумуляторных батарей.
  • Бесшумная работа системы достигнута за счет прогрессивных материалов и конструкций ветрогенераторов.

Для получения оптимальных показателей необходимо чтобы были выполнены следующие условия:

  • Устойчивый ветер. Перед установкой нужно предусмотреть отсутствие вблизи лесов и парков, показатели скорости и силы ветряных потоков.
  • Для установки понадобится специальная техника для установки мачты ветрогенератора.
  • Периодически обновлять смазочные материалы для продолжительной службы системы. 

Солнечные панели (батареи)

В сравнении с ветрогенераторами у солнечных батарей более сложный процесс изготовления, в связи с чем их стоимость будет выше. Но такие системы технологичнее по ряду преимуществ:

  • Так же, как и ветрогенераторы, солнечные батареи не нуждаются в топливе, работают бесшумно и без перерыва.
  • Более долговечны. Время эксплуатации превышает ветрогенераторы на 10 лет.
  • Более доступная кинетическая энергия. Солнечный свет более постоянный, чем порывы ветра.
  • Область установки. Солнечная энергия намного доступнее ветра.
  • Регулировка мощности. У ветрогенераторов мощность фиксированная, а на солнечных батареях есть возможность устанавливать нужную в зависимости от потребностей.

Единственным недостатком солнечных панелей является продолжительность дня в зависимости от часового пояса. Например, в Мурманской области в декабре-январе солнечные батареи будут непригодны в связи с наступлением полярной ночи и отсутствием солнечного света.

Солнечные батареи, установленные на крыше жилого дома

Гибридные системы

Объединив ветрогенераторы и солнечные батареи, мы получим систему, в которой будут компенсированы недостатки получения энергии.

Основным источником является ветрогенератор, он требует меньше затрат на установку и проще в обслуживании. В качестве дополнительного источника энергии применяют солнечные фотовольтаические панели.

В случае штиля они возьмут на себя функцию производства электроэнергии.

Контроллеры

Известный факт, что полное разряжение, как и чрезмерная зарядка, влияют на дальнейшую работу аккумуляторных батарей. Особо чувствительными являются свинцово-кислотные аккумуляторные панели.

Для предохранения батарей от этих нагрузок и служит регулятор.

При максимальной зарядке АКБ (аккумуляторной батареи) с помощью контроллеров уровень тока будет понижен, при понижении заряда до критических значений подача энергии будет остановлена.

Типы контроллеров

Существует несколько типов регуляторов: On/Off, ШИМ и МРРТ.

Перед подбором устройства необходимо ответить на два основных вопроса:

  • Какое напряжение на входе?
  • Какой номинальный ток?

    Автоматический контроллер заряда с регулятором MPPT для солнечных батарей

Как и у большинства устройств, обязательно наличие прочностного запаса. Максимальное напряжение контроллера должно превышать общее напряжение на 20 процентов. Для определения запаса номинального тока нужно к величине тока короткого замыкания солнечных батарей прибавить 10–20 процентов, также данное значение зависит от типа регулятора.

Эти данные можно найти в технических паспортах контроллеров. Например, для контроллера солнечных батарей SOL4UCN2 (ШИМ) выходное напряжение тока принимает значения 3 вольта, 6 вольт, 12 вольт. Также возможно подобрать контроллеры с выходным напряжением 36 или 48 вольт. К тому же необходимо предусмотреть инвертор для преобразования тока.

Контроллеры On/Off

В линейке контроллеров являются простейшими и, соответственно, недорогими.

Когда заряд аккумулятора достигает предельного значения, контроллер разрывает соединение между солнечной панелью и батареей посредством реле.

В действительности батарея не полностью заряжена, что оказывает влияние на дальнейшую работоспособность аккумулятора. Поэтому несмотря на низкую стоимость, лучше не использовать регулятор данного типа.

Контроллер On/Off для солнечных батарей

ШИМ (PWM) – контроллеры

Для этого типа контроллера применена технология широтно-импульсной модуляции. Преимуществом является прекращение заряда аккумуляторной батареи без отсоединения солнечных модулей, что позволяет продолжить зарядку АКБ до максимального уровня. Рекомендованная область применения – системы с небольшой мощностью (до 48 вольт).

МРРТ – контроллеры

Maximum power point tracker контроллер появился 80-х годах. Самым эффективным по праву считается именно этот тип контроллера.

Он отслеживает максимальный энергетический пик и понижает напряжение, но увеличивает силу тока, не изменяя мощность.

Благодаря высокому коэффициенту полезного действия МРРТ – контроллеры сокращают срок окупаемости солнечных станций. Выходные напряжения варьируются от 12 до 48 вольт.

Самодельные контроллеры

Безусловно, можно сделать контроллер своими руками. Прототипом служит . В его схеме с помощью реле коммутируется сигнал, полученный с ветрогенераторов или солнечных батарей. Реле управляется посредством пороговой схемы и полевого транзисторного ключа. Подстроечные резисторы регулируют пороги переключения режима.

Схема для создания контроллера своими руками

В данной схеме использовано 8 резисторов в качестве нагрузки для утилизации энергии. Эта схема является первоначальной, ее можно упростить самостоятельно, а можно прибегнуть к помощи достоверных источников.

Несмотря на очевидную простоту конструкции, не рекомендуется использовать контроллеры, созданные своими руками, во избежание неблагоприятных последствий, таких как порча АКБ, например (при напряжениях 36–48 вольт).

Гибриды

Гибридным контроллером считается контроллер, использующий энергию ветра и солнца. Его преимуществом является возможность использование двух источников тока (ветрогенератора или солнечной батареи) совместно или попеременно. Незаменим для автономных производств.

Дополнительные функции аккумуляторных батарей

Прогресс не стоит на месте и благодаря ему можно подобрать контроллер с нужными характеристиками для каждого потребителя индивидуально.

Модель контроллера может включать в себя дисплей с выводом информации о батарее, реле, солнечных панелях, количестве заряда, напряжении (вольт), токе.

Также может присутствовать система оповещения при приближении разрядки и таймер для активации ночного режима. Существуют контроллеры с возможностью подключения к компьютеру.

Контроллер с возможностью подключения к компьютеру I-Panda SMART 2

Платформа контроллера

Одним из оптимальных вариантов служит платформа фирмы Arduino (Ардуино). Плюсов достаточно много. Основным преимуществом является доступность, ведь программная оболочка бесплатна. Печатные платы есть в свободном доступе. Благодаря открытой архитектуре системы проблем с дополнением линейки не возникнет.

Данные контроллеры поддерживают двигатели с напряжением до 12 вольт, можно подключить реле. Также Arduino выпускают и другие аппаратно-программные средства. Например, микроконтроллеры, для подпитки которых требуется 5 вольт или 3,3 вольта. К тому же программистам доступны специальные возможности портов (ШИМ, АЦП).

Многие усовершенствования можно выполнить своими руками. Но в 2008 году фирма разделилась на две части, которые оставили одно и то же название, но разные сайты (arduino.cc и arduino.org). При выборе продукции необходимо обращать внимание на это, ведь несмотря на общее прошлое, сейчас продукция Arduino отличается.

Инверторы

Устройство, помогающее сигналу совершить поворот на 1800, преобразовывающее постоянный ток в переменный. При этом частота и/или напряжение меняется. Схем инверторов достаточно большое количество, самыми часто встречающимися являются три типа.

Схема мостового инвертора без трансформатора

Первый тип – это мостовые инверторы без трансформатора, применяются для установок с высокими напряжениями (от 220 до 360 вольт). Ко второму типу относят инверторы с нулевым выводом трансформатора, используют в системах с низким напряжением (12–24 вольт). И третьим типом являются мостовые инверторы с трансформатором. Их применяют для обширных диапазонов напряжений мощности (48 вольт).

Страны-производители

На рынке представлено множество контроллеров заряда с различными модификациями, отличающихся как по цене, так и по качеству. Среди контроллеров российского производства наилучшими вариантами являются производители: Эмикон, Автоматика-с, Овен.

Данные фирмы на рынке контроллеров находятся уже много лет и вполне зарекомендовали себя. Среди контроллеров зарубежного производства лидерами считаются Allen-Bradley, MicroLogix (дочернее производство Allen Bradley) и SLC 500. Главным критерием выбора именно этих производителей является большая область применения, т. е.

контроллеры данных фирм можно использовать в разных сферах и для разных целей.

Контроллеры зарубежного производства MicroLogix

Расчет системы

Чтобы правильно рассчитать систему, необходимо действовать последовательно. В большинстве случаев принимается стандартное напряжение 220 вольт. Для начала нужно задаться углом поворота солнечных панелей.

Затем оценивают примерную производительность. Для этого нужно рассчитать минимальную и максимальную солнечную активность для годичного цикла. Эти значения также будут зависеть от географического расположения.

Далее идет выбор инвертора. Одними из основных критериев выбора является коэффициент полезного действия и различные защитные механизмы.

Аккумуляторные батареи подбираются по рабочей емкости и току в зависимости от нужд потребителя. Соединение аккумуляторов возможно как последовательно, так и параллельно. Для большей надежности рекомендуется, чтобы АКБ были одной мощности, в идеале выпущены одной партией.

В основном используются свинцово-кислотные аккумуляторные батареи, но в последнее время из-за снижения цен конкурентоспособными становятся литийионные АКБ.

Их отличие состоит в большей удельной емкости, но для литийионных аккумуляторов требуется специальное зарядное устройство, многие регуляторы им просто-напросто не подойдут.

Контроллер заряда солнечных батарей МРРТ Tracer 1215RN

При использовании МРРТ-контроллеров необходимо учитывать максимальный выходной ток контроллера, а не первичного источника. У ШИМ-контроллеров такой особенности нет.

Еще одним аспектом, требующим внимания, является выбор реле и проводов. Их длина должна быть минимальной, чтобы избежать дополнительных потерь.

Само собой, провода нужно подбирать в зависимости от потребностей, ведь их характеристики зависят от поперечного сечения провода и материала, из которого они изготовлены. Провода должны выдерживать указанное напряжение от 12 до 48 вольт.

Также не стоит пренебрегать изоляционным материалом, он напрямую влияет на теплопроводность проводов.

Вывод

Независимо от типа регулятора (ШИМ, МРРТ или изготовленный своими руками), необходимо учитывать параметры всей системы для более продуктивной работы (в том числе напряжение от 12 до 48 вольт).

Сейчас выбор моделей на рынке неограничен, но не стоит брать первый попавшийся, нужно тщательно ознакомиться с характеристиками, ведь от этого зависит долговечность и надежность остальных компонентов.

Принцип работы контроллера заряда солнечных батарей

При правильном подборе составляющих частей системы, углов поворота солнечных панелей и их географического расположения можно создать экономичную систему получения энергии без дополнительных источников питания. Причем многое можно сделать своими руками, покупая только основные части (например, платформу Arduino), не требуя дополнительных расходов.

Источник: https://SolntsePek.ru/kontrollery-zaryada/kontroller-zaryada-solnechnyx-batarej.html

Ссылка на основную публикацию
Adblock
detector